计算机科学
弹道
二进制数
签名(拓扑)
能量(信号处理)
电压
信号(编程语言)
相似性(几何)
特征提取
频域
数据挖掘
工程类
人工智能
电气工程
数学
计算机视觉
程序设计语言
统计
物理
图像(数学)
天文
算术
几何学
作者
Liang Du,Dawei He,Ronald G. Harley,T.G. Habetler
标识
DOI:10.1109/tsg.2015.2442225
摘要
Characterization of electric loads provides opportunities to incorporate detailed energy usage information into applications such as protection, efficiency certification, demand response, and energy management. This paper proposes a low computational cost, but yet accurate method, to extract signatures for load classification and characterization. Instead of utilizing digital signal processing and frequency-domain analysis, this paper abstracts the similarity of voltage-current (V-I) trajectories between loads and proposes to map V-I trajectories to a grid of cells with binary values. Graphical signatures can then be extracted for many applications. The proposed method significantly reduces the computational cost compared with existing frequency-domain signature extraction methods. Test results show that an average of over 99% of success rate can be achieved using the proposed signatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI