Constructing elastic distinguishability metrics for location privacy

计算机科学 差别隐私 公制(单位) 人气 噪音(视频) 语义学(计算机科学) 理论计算机科学 相似性(几何) 数据挖掘 人工智能 图像(数学) 心理学 社会心理学 运营管理 经济 程序设计语言
作者
Konstantinos Chatzikokolakis,Catuscia Palamidessi,Marco Stronati
出处
期刊:Proceedings on Privacy Enhancing Technologies [De Gruyter Open]
卷期号:2015 (2): 156-170 被引量:63
标识
DOI:10.1515/popets-2015-0023
摘要

Abstract With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a “geographic fence” that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris’ wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意修洁发布了新的文献求助10
刚刚
Ccc发布了新的文献求助10
1秒前
春夏应助小小苏荷采纳,获得20
1秒前
皮卡丘比特应助小小苏荷采纳,获得20
1秒前
李健的粉丝团团长应助666采纳,获得10
1秒前
5小0完成签到,获得积分20
2秒前
拼搏的奄发布了新的文献求助10
3秒前
Akim应助youyuer采纳,获得10
4秒前
4秒前
5秒前
打打应助kyJYbs采纳,获得10
6秒前
grmqgq发布了新的文献求助10
6秒前
淡定的彩虹完成签到,获得积分10
6秒前
李爱国应助呆萌的傲旋采纳,获得10
7秒前
三家村猛虎完成签到 ,获得积分10
7秒前
独特浩然发布了新的文献求助20
7秒前
迟迟完成签到,获得积分10
8秒前
李健应助十一采纳,获得10
8秒前
Orange应助十一采纳,获得10
8秒前
顾矜应助十一采纳,获得10
8秒前
万能图书馆应助十一采纳,获得10
8秒前
科研通AI6应助十一采纳,获得10
8秒前
Orange应助十一采纳,获得10
8秒前
情怀应助十一采纳,获得10
8秒前
烟花应助无奈狗采纳,获得10
8秒前
9秒前
鱼yu发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
默默寄松发布了新的文献求助50
11秒前
12秒前
wlscj应助辛禹采纳,获得20
12秒前
独钓寒江雪完成签到 ,获得积分10
12秒前
明理的以亦应助米其林采纳,获得30
13秒前
13秒前
14秒前
liwei发布了新的文献求助10
14秒前
白智妍发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764