Constructing elastic distinguishability metrics for location privacy

计算机科学 差别隐私 公制(单位) 人气 噪音(视频) 语义学(计算机科学) 理论计算机科学 相似性(几何) 数据挖掘 人工智能 图像(数学) 心理学 社会心理学 运营管理 经济 程序设计语言
作者
Konstantinos Chatzikokolakis,Catuscia Palamidessi,Marco Stronati
出处
期刊:Proceedings on Privacy Enhancing Technologies [De Gruyter Open]
卷期号:2015 (2): 156-170 被引量:63
标识
DOI:10.1515/popets-2015-0023
摘要

Abstract With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a “geographic fence” that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris’ wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
制冷剂完成签到 ,获得积分10
刚刚
哈哈哈哈完成签到 ,获得积分10
刚刚
啦啦啦发布了新的文献求助10
1秒前
渡劫完成签到,获得积分10
1秒前
Jeffrey完成签到,获得积分10
2秒前
2秒前
研友_ZGAWYL完成签到,获得积分10
2秒前
年少完成签到,获得积分10
2秒前
不停疯狂完成签到 ,获得积分0
4秒前
乐多完成签到,获得积分20
5秒前
郝老头完成签到,获得积分10
5秒前
炒鸡小将发布了新的文献求助10
5秒前
好好完成签到,获得积分10
6秒前
555完成签到,获得积分10
7秒前
7秒前
keke发布了新的文献求助10
8秒前
欧皇发布了新的文献求助30
9秒前
研研研完成签到,获得积分10
10秒前
hzwyyds应助谷粱诗云采纳,获得10
12秒前
12秒前
烟花应助lsy采纳,获得10
13秒前
忧心的若云完成签到,获得积分10
14秒前
李雯完成签到,获得积分10
16秒前
小瓶盖完成签到 ,获得积分10
16秒前
美人鱼战士完成签到 ,获得积分10
16秒前
张一完成签到,获得积分10
17秒前
18秒前
等我吃胖完成签到,获得积分10
18秒前
18秒前
二马三乡完成签到 ,获得积分10
19秒前
19秒前
啦啦啦发布了新的文献求助30
22秒前
大大小发布了新的文献求助10
22秒前
peng完成签到 ,获得积分10
24秒前
追寻的问玉完成签到 ,获得积分10
24秒前
哎呀呀完成签到,获得积分10
25秒前
六氟合铂酸氙完成签到 ,获得积分10
25秒前
Gary完成签到,获得积分10
25秒前
27秒前
天马行空完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470