Constructing elastic distinguishability metrics for location privacy

计算机科学 差别隐私 公制(单位) 人气 噪音(视频) 语义学(计算机科学) 理论计算机科学 相似性(几何) 数据挖掘 人工智能 图像(数学) 心理学 运营管理 社会心理学 经济 程序设计语言
作者
Konstantinos Chatzikokolakis,Catuscia Palamidessi,Marco Stronati
出处
期刊:Proceedings on Privacy Enhancing Technologies [De Gruyter]
卷期号:2015 (2): 156-170 被引量:63
标识
DOI:10.1515/popets-2015-0023
摘要

Abstract With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a “geographic fence” that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris’ wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助su采纳,获得30
1秒前
good发布了新的文献求助10
1秒前
chenxin7271完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
马蹄应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
研友_LX66qZ完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得30
2秒前
Akim应助火星上的听云采纳,获得10
2秒前
唐博凡应助科研通管家采纳,获得10
2秒前
西柚完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
SciGPT应助洛鸢采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
soso应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
星威应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762