Constructing elastic distinguishability metrics for location privacy

计算机科学 差别隐私 公制(单位) 人气 噪音(视频) 语义学(计算机科学) 理论计算机科学 相似性(几何) 数据挖掘 人工智能 图像(数学) 心理学 社会心理学 运营管理 经济 程序设计语言
作者
Konstantinos Chatzikokolakis,Catuscia Palamidessi,Marco Stronati
出处
期刊:Proceedings on Privacy Enhancing Technologies [De Gruyter]
卷期号:2015 (2): 156-170 被引量:63
标识
DOI:10.1515/popets-2015-0023
摘要

Abstract With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a “geographic fence” that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris’ wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy.1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yipyip发布了新的文献求助20
刚刚
xqssll发布了新的文献求助10
刚刚
昔时旧日发布了新的文献求助10
2秒前
尛瞐慶成发布了新的文献求助10
3秒前
Nick完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
Rian完成签到 ,获得积分10
5秒前
5秒前
科研通AI2S应助闪闪饼干采纳,获得10
6秒前
aaa完成签到,获得积分20
7秒前
Nick发布了新的文献求助10
7秒前
8秒前
8秒前
hongyi完成签到,获得积分10
8秒前
9秒前
充电宝应助laj采纳,获得10
10秒前
D733完成签到,获得积分10
10秒前
可爱的函函应助xqssll采纳,获得10
10秒前
小满发布了新的文献求助10
11秒前
蒋若风发布了新的文献求助10
11秒前
领导范儿应助乐观的丹琴采纳,获得10
13秒前
安彩青完成签到 ,获得积分10
13秒前
顺其自然完成签到,获得积分10
13秒前
13秒前
6666关注了科研通微信公众号
14秒前
火星上雁枫应助史俊美采纳,获得10
14秒前
14秒前
15秒前
自觉竺发布了新的文献求助10
15秒前
东方诩发布了新的文献求助10
17秒前
lmy发布了新的文献求助10
17秒前
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3251906
求助须知:如何正确求助?哪些是违规求助? 2894804
关于积分的说明 8283259
捐赠科研通 2563436
什么是DOI,文献DOI怎么找? 1391535
科研通“疑难数据库(出版商)”最低求助积分说明 651860
邀请新用户注册赠送积分活动 628860