Automatically Improved VCG Mechanism for Local Energy Markets via Deep Learning

作者
Tao Qian,Chengcheng Shao,Di Shi,Xiuli Wang,Xifan Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tsg.2021.3128182
摘要

The proliferation of distributed renewable energy resources and plug-in electric vehicles (EVs) have helped residential electricity consumers evolve into prosumers as they participate in the local energy market (LEM) by engaging in transactions of surplus electricity. In this system, the budgetbalance problem is a frequent issue, particularly when Vickrey-Clarke-Groves (VCG)-based mechanisms are applied to managing the two-sided nature of LEM. Although this issue could be partially addressed by manually modifying the LEM, the variance in the LEM environment needs to be better understood. This paper proposes a deep learning-based automatic mechanism design (AMD) method to improve VCG for tackling the budget-balanced two-sided LEM, as a way to avoid tedious manual adjustments. A convolutional neural network (CNN) with self-attention mechanism is constructed to extract features from biddings and to provide robust generalization capabilities for participating prosumers. The gated recurrent units (GRUs) are utilized to extend the proposed approach to the non-stationary bidding environment. This improved mechanism is targeted as efficient and incentive compatible, with the ability to keep the balance between the budget-balance and individual rationality. Case studies are conducted to demonstrate effectiveness of the proposed automatically improved mechanism and adaptive ability to various bidding environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助啦啦啦采纳,获得10
刚刚
HongY发布了新的文献求助10
刚刚
2秒前
Owen应助MM采纳,获得10
2秒前
科研狗完成签到 ,获得积分0
3秒前
任生平完成签到,获得积分10
3秒前
3秒前
宁戎发布了新的文献求助20
4秒前
5秒前
江屿发布了新的文献求助10
5秒前
6秒前
乐乐应助要减肥的访旋采纳,获得10
6秒前
7秒前
jmx234完成签到,获得积分10
7秒前
9秒前
genhao7发布了新的文献求助10
9秒前
WIL发布了新的文献求助10
10秒前
健忘四娘完成签到 ,获得积分10
10秒前
11秒前
科研通AI2S应助lhxing采纳,获得10
12秒前
薛之谦完成签到,获得积分10
12秒前
14秒前
香蕉觅云应助znsmaqwdy采纳,获得10
14秒前
温暖宛筠完成签到,获得积分10
14秒前
领导范儿应助楼藏鸟采纳,获得10
14秒前
光亮向露完成签到,获得积分10
15秒前
兜兜揣满糖完成签到 ,获得积分10
16秒前
虫二完成签到,获得积分10
16秒前
小鱼儿发布了新的文献求助10
17秒前
18秒前
丘比特应助科研通管家采纳,获得30
18秒前
李健应助科研通管家采纳,获得10
18秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
山复尔尔应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得30
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420