Automatically Improved VCG Mechanism for Local Energy Markets via Deep Learning

作者
Tao Qian,Chengcheng Shao,Di Shi,Xiuli Wang,Xifan Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tsg.2021.3128182
摘要

The proliferation of distributed renewable energy resources and plug-in electric vehicles (EVs) have helped residential electricity consumers evolve into prosumers as they participate in the local energy market (LEM) by engaging in transactions of surplus electricity. In this system, the budgetbalance problem is a frequent issue, particularly when Vickrey-Clarke-Groves (VCG)-based mechanisms are applied to managing the two-sided nature of LEM. Although this issue could be partially addressed by manually modifying the LEM, the variance in the LEM environment needs to be better understood. This paper proposes a deep learning-based automatic mechanism design (AMD) method to improve VCG for tackling the budget-balanced two-sided LEM, as a way to avoid tedious manual adjustments. A convolutional neural network (CNN) with self-attention mechanism is constructed to extract features from biddings and to provide robust generalization capabilities for participating prosumers. The gated recurrent units (GRUs) are utilized to extend the proposed approach to the non-stationary bidding environment. This improved mechanism is targeted as efficient and incentive compatible, with the ability to keep the balance between the budget-balance and individual rationality. Case studies are conducted to demonstrate effectiveness of the proposed automatically improved mechanism and adaptive ability to various bidding environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樊哲伟发布了新的文献求助10
1秒前
omnissiah发布了新的文献求助10
2秒前
烂漫立轩发布了新的文献求助10
2秒前
wlscj应助王小可采纳,获得20
3秒前
所所应助YANNAN采纳,获得10
4秒前
一叶舟完成签到 ,获得积分10
6秒前
lins完成签到,获得积分10
7秒前
慕青应助han采纳,获得10
7秒前
8秒前
CodeCraft应助烂漫立轩采纳,获得10
8秒前
汉堡包应助寒山采纳,获得30
9秒前
Zoye完成签到 ,获得积分10
9秒前
李健应助樊哲伟采纳,获得10
11秒前
汉堡包应助xjz采纳,获得10
13秒前
14秒前
JerryHsc完成签到,获得积分10
15秒前
317发布了新的文献求助30
15秒前
18秒前
Lucas应助米香采纳,获得10
21秒前
大胆冰岚发布了新的文献求助10
23秒前
24秒前
24秒前
27秒前
Owen应助317采纳,获得10
28秒前
han发布了新的文献求助10
30秒前
婷婷发布了新的文献求助10
30秒前
栾花花完成签到,获得积分10
30秒前
小麦发布了新的文献求助10
30秒前
wlscj举报小为求助涉嫌违规
30秒前
31秒前
33秒前
35秒前
37秒前
37秒前
胡桃发布了新的文献求助10
37秒前
liu完成签到,获得积分10
39秒前
老实紫萱发布了新的文献求助10
39秒前
39秒前
田様应助寂川采纳,获得10
39秒前
wwcchhh完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592