Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review

废水 抗生素耐药性 抗生素 微生物燃料电池 膜透性 突变 细胞毒性 纳米颗粒 水平基因转移 污水处理 化学 生物 生物技术 基因 微生物学 纳米技术 基因组 材料科学 遗传学 环境科学 环境工程 体外 电极 阳极 物理化学 突变
作者
Hanlin Cui,Adam L. Smith
出处
期刊:Environmental Research [Elsevier]
卷期号:204: 112373-112373 被引量:34
标识
DOI:10.1016/j.envres.2021.112373
摘要

Nanoparticles (NPs) and antibiotic resistance elements are ubiquitous in wastewater and consequently, in receiving environments. Sub-lethal levels of engineered NPs potentially result in a selective pressure on antibiotic resistance gene (ARG) propagation in wastewater treatment plants. Conversely, emergent NPs are being designed to naturally attenuate ARGs based on special physical and electrochemical properties, which could alleviate dissemination of ARGs to the environment. The complex interactions between NPs and antibiotic resistance elements have heightened interest in elucidating the potential positive and negative implications. This review focuses on the properties of NPs and ARGs and how their interactions could increase or decrease antibiotic resistance at wastewater treatment plants and in receiving environments. Further, the potential for sub-lethal level NPs to facilitate horizontal gene transfer of ARGs and increase mutagenesis rates, which adds a layer of complexity to combatting antibiotic resistance associated with wastewater management, is discussed. Notably, the literature revealed that sub-lethal exposure of engineered NPs may facilitate conjugative transfer of ARGs by increasing cell membrane permeability. The enhanced permeability is a result of direct damage via NP attachment and indirect damage by generating reactive oxygen species (ROS) and causing genetic changes relevant to conjugation. Finally, current knowledge gaps and future research directions (e.g., deciphering the fate of NPs in the environment and examining the long-term cytotoxicity of NPs) are identified for this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的海秋完成签到,获得积分20
刚刚
任性的咖啡完成签到,获得积分20
1秒前
dagongren完成签到,获得积分10
2秒前
淡淡菀发布了新的文献求助10
2秒前
4秒前
7秒前
8秒前
奋斗初南完成签到,获得积分10
8秒前
乐乐应助完美的海秋采纳,获得80
8秒前
靠得住的小仙女完成签到,获得积分10
10秒前
学习中的呜哩哇啦完成签到,获得积分10
11秒前
连夏之完成签到,获得积分20
11秒前
11秒前
wangjing应助舒心忆山采纳,获得10
13秒前
ma完成签到,获得积分10
13秒前
鱼新碟发布了新的文献求助10
13秒前
调研昵称发布了新的文献求助10
14秒前
14秒前
15秒前
紫陌东门完成签到,获得积分10
17秒前
18秒前
充电宝应助研友_LOK59L采纳,获得10
18秒前
YXIAN完成签到,获得积分10
18秒前
不配.应助xc采纳,获得10
19秒前
年轻半雪发布了新的文献求助10
19秒前
汉堡包应助ma采纳,获得10
20秒前
吾猫完成签到,获得积分20
21秒前
Jane_2022完成签到,获得积分10
22秒前
dasdsa发布了新的文献求助10
24秒前
丘比特应助年轻半雪采纳,获得10
27秒前
28秒前
29秒前
32秒前
研友_X894JZ完成签到 ,获得积分10
33秒前
34秒前
35秒前
小蘑菇应助dlch采纳,获得10
35秒前
Jane_2022发布了新的文献求助10
36秒前
37秒前
科研通AI2S应助啵叽一口采纳,获得10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240388
求助须知:如何正确求助?哪些是违规求助? 2885254
关于积分的说明 8237739
捐赠科研通 2553584
什么是DOI,文献DOI怎么找? 1381724
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009