镉
砷
糙米
农学
水田
化学
生物利用度
土壤水分
水分
野外试验
园艺
含水量
环境科学
环境化学
生物
食品科学
土壤科学
工程类
有机化学
生物信息学
岩土工程
作者
Peng Zeng,Bin-Yun Wei,Hang Zhou,Jiao-Feng Gu,Bo‐Han Liao
标识
DOI:10.1016/j.scitotenv.2021.151801
摘要
Water management is an effective measure for the control of cadmium (Cd) and arsenic (As) in situ uptake and transport in rice. In this study, the effects of the co-application of foliar spraying silicon (Si) and water management on Cd and As uptake and transport in rice were studied under paddy soils that were seriously co-contaminated with Cd and As with a two-year field experiment. The results showed that the co-application of water management and foliar spraying Si could effectively decrease the bioavailability of Cd and As in soil and reduce the uptake and transport of Cd and As in rice. The co-application of water management and foliar spraying Si treatments decreased the exchangeable and TCLP extractable Cd and As contents in the soil. Especially for moisture at the maturing stage combined with foliar spraying Si treatment (MMS), the exchangeable and TCLP extractable Cd and As contents were significantly decreased by 48.49%-55.14% and 45.50%-54.67%, and 41.95%-56.73% and 37.80%-46.76% in the two seasons, respectively. The moisture at the maturing stage treatment significantly decreased the Cd and As contents in brown rice by 44.26%-48.59% and 23.90%-38.16% in the two seasons relative to the control, respectively. Furthermore, MMS treatment simultaneously inhibited Cd and As transport and accumulation in rice among all co-application treatments. The translocation factor (TF)stem-brown rice of Cd, TFstem-leaf of As, and TFstem-brown rice of As values in the MMS treatment were significantly decreased as compared with the MM treatment. Furthermore, both the Cd and As contents in brown rice under the MMS treatment significantly decreased by 15.33%-30.74% and 33.84%-40.80%, respectively, in the two seasons. The results suggested that foliar spraying Si combined with moisture at the maturing stage might be a promising measure to synchronously inhibit the transport and accumulation of Cd and As in rice.
科研通智能强力驱动
Strongly Powered by AbleSci AI