Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT

计算机科学 异常检测 图形 理论计算机科学 数据挖掘 多元统计 时间序列 人工智能 机器学习
作者
Zekai Chen,Dingshuo Chen,Xiao Zhang,Zixuan Yuan,Xiuzhen Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9179-9189 被引量:59
标识
DOI:10.1109/jiot.2021.3100509
摘要

Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts. Codes are available at https://github.com/ZEKAICHEN/GTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助LJL采纳,获得10
刚刚
1秒前
cwn完成签到,获得积分10
1秒前
zhuzhu完成签到,获得积分0
1秒前
丘比特应助彩色的蓝天采纳,获得10
1秒前
ChoccyPasta完成签到,获得积分10
2秒前
2秒前
感动的冬云完成签到,获得积分10
2秒前
嘤嘤嘤发布了新的文献求助10
3秒前
wuhaixia完成签到,获得积分10
3秒前
正版DY完成签到,获得积分10
3秒前
333发布了新的文献求助10
3秒前
醒醒发布了新的文献求助10
3秒前
xfxx发布了新的文献求助10
4秒前
Sissi完成签到 ,获得积分10
4秒前
校长完成签到,获得积分20
4秒前
尼亚吉拉完成签到,获得积分10
4秒前
4秒前
布布发布了新的文献求助10
4秒前
Zhang发布了新的文献求助10
5秒前
qinqin发布了新的文献求助10
6秒前
顾夏包发布了新的文献求助30
6秒前
钰宁发布了新的文献求助10
6秒前
NexusExplorer应助ZZZ采纳,获得10
7秒前
8秒前
顺心书琴完成签到,获得积分10
8秒前
习习应助Nifeng采纳,获得10
8秒前
mrmrer发布了新的文献求助10
8秒前
10秒前
MUSTer一一完成签到 ,获得积分10
10秒前
通通通完成签到,获得积分10
10秒前
10秒前
务实的菓完成签到 ,获得积分10
11秒前
似水流年完成签到,获得积分10
11秒前
An慧完成签到,获得积分10
11秒前
Hello应助阿金采纳,获得10
11秒前
11秒前
11秒前
13秒前
顾夏包完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794