Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT

计算机科学 异常检测 图形 理论计算机科学 数据挖掘 多元统计 时间序列 人工智能 机器学习
作者
Zekai Chen,Dingshuo Chen,Xiao Zhang,Zixuan Yuan,Xiuzhen Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9179-9189 被引量:59
标识
DOI:10.1109/jiot.2021.3100509
摘要

Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts. Codes are available at https://github.com/ZEKAICHEN/GTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小九发布了新的文献求助10
1秒前
未晞发布了新的文献求助10
1秒前
0000发布了新的文献求助10
1秒前
阿琳发布了新的文献求助10
1秒前
852应助Hey采纳,获得10
2秒前
3秒前
3秒前
WSSY发布了新的文献求助10
3秒前
FG发布了新的文献求助10
3秒前
源缘发布了新的文献求助10
4秒前
长情听云发布了新的文献求助10
4秒前
花花应助权志龙采纳,获得10
4秒前
4秒前
Jasper应助chenshi采纳,获得10
5秒前
5秒前
完美的一斩完成签到,获得积分10
5秒前
matchstick发布了新的文献求助10
5秒前
6秒前
酷炫的灵阳完成签到,获得积分10
6秒前
7秒前
Ava应助zhd采纳,获得10
7秒前
0x1orz发布了新的文献求助10
7秒前
ALDXL完成签到,获得积分10
8秒前
tyZhang发布了新的文献求助10
9秒前
DrNant发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
科目三应助0000采纳,获得10
13秒前
14秒前
长情听云完成签到,获得积分10
15秒前
0x1orz完成签到,获得积分10
16秒前
16秒前
小蘑菇应助云氲采纳,获得10
17秒前
追寻梦松完成签到,获得积分10
18秒前
英姑应助gdh采纳,获得10
18秒前
chenshi完成签到,获得积分10
18秒前
北极光发布了新的文献求助10
18秒前
zhd发布了新的文献求助10
19秒前
QAQSS完成签到 ,获得积分10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053