Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT

计算机科学 异常检测 图形 理论计算机科学 数据挖掘 多元统计 时间序列 人工智能 机器学习
作者
Zekai Chen,Dingshuo Chen,Xiao Zhang,Zixuan Yuan,Xiuzhen Cheng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9179-9189 被引量:59
标识
DOI:10.1109/jiot.2021.3100509
摘要

Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts. Codes are available at https://github.com/ZEKAICHEN/GTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yongjie完成签到,获得积分10
刚刚
ddli发布了新的文献求助10
1秒前
Willy发布了新的文献求助30
1秒前
研友_Y59785应助神棍喜来乐采纳,获得10
2秒前
2秒前
4秒前
scinewbee发布了新的文献求助10
5秒前
务实的菓给务实的菓的求助进行了留言
6秒前
q792309106发布了新的文献求助10
7秒前
9秒前
11秒前
scinewbee完成签到,获得积分10
13秒前
13秒前
Coral.发布了新的文献求助10
16秒前
哪有人不疯完成签到,获得积分10
17秒前
bkagyin应助悲凉的雁风采纳,获得10
18秒前
小蘑菇应助科研达人采纳,获得10
18秒前
科研通AI5应助q792309106采纳,获得10
18秒前
syvshc应助科研达人采纳,获得10
18秒前
小蘑菇应助科研达人采纳,获得10
18秒前
syvshc应助科研达人采纳,获得10
18秒前
赘婿应助科研达人采纳,获得10
18秒前
英姑应助科研达人采纳,获得10
18秒前
孙燕应助科研达人采纳,获得10
18秒前
顾矜应助科研达人采纳,获得10
18秒前
科研通AI5应助科研达人采纳,获得10
18秒前
上官若男应助科研达人采纳,获得10
18秒前
19秒前
华仔应助xiao采纳,获得10
19秒前
慕青应助Guan采纳,获得10
20秒前
22秒前
23秒前
23秒前
不落发布了新的文献求助10
23秒前
淡定从凝发布了新的文献求助10
24秒前
鸣笛应助科研达人采纳,获得30
26秒前
科研通AI5应助科研达人采纳,获得10
27秒前
生动路人应助科研达人采纳,获得10
27秒前
生动路人应助科研达人采纳,获得10
27秒前
syvshc应助科研达人采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724