Local-constraint transformer network for stock movement prediction

计算机科学 变压器 人工神经网络 粒子群优化
作者
Jincheng Hu
出处
期刊:International Journal of Computational Science and Engineering [Inderscience Publishers]
卷期号:24 (4): 429-437
标识
DOI:10.1504/ijcse.2021.10039986
摘要

Stock movement prediction is to predict the future movements of stocks for investment, which is challenging both for research and industry. Typically, stock movement is predicted based on financial news. However, existing prediction methods based on financial news directly utilise models for natural language processing such as recurrent neural networks and transformer, which are still incapable of effectively processing the key local information in financial news. To address this issue, local-constraint transformer network (LTN) is proposed in this paper for stock movement prediction. LTN leverages transformer network with local-constraint to encode the financial news, which can increase the attention weights of key local information. Moreover, since there are more difficult samples in financial news which are hard to be learnt, this paper further proposes a difficult-sample-balance loss function to train the network. This paper also researches the combination of financial news and stock price data for prediction. Experiments demonstrate that the proposed model outperforms several powerful existing methods on the datasets collected, and the stock price data can assist to improve the prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助陈龙采纳,获得200
刚刚
邓炎林发布了新的文献求助20
1秒前
2秒前
小二郎应助路人丨安采纳,获得10
3秒前
guangshuang发布了新的文献求助10
3秒前
qxx完成签到,获得积分10
3秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
4秒前
云竹丶完成签到,获得积分10
6秒前
乐观的小鸡完成签到,获得积分10
7秒前
刺客发布了新的文献求助10
8秒前
10秒前
10秒前
zxm完成签到,获得积分10
11秒前
调皮汽车完成签到 ,获得积分10
13秒前
ceeray23应助沫荔采纳,获得10
14秒前
Jack完成签到,获得积分10
14秒前
14秒前
荣耀发布了新的文献求助10
14秒前
ProfWang完成签到,获得积分10
14秒前
14秒前
15秒前
小宝爸完成签到,获得积分10
16秒前
丘比特应助mysoul123采纳,获得10
16秒前
zzz完成签到,获得积分20
17秒前
18秒前
kinase完成签到 ,获得积分10
21秒前
21秒前
甜甜秋荷发布了新的文献求助10
21秒前
wrr完成签到,获得积分10
22秒前
追光者完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
22秒前
22秒前
风中垣完成签到,获得积分10
23秒前
Ava应助yyyaooo采纳,获得10
23秒前
我是老大应助荣耀采纳,获得10
23秒前
24秒前
zhang完成签到,获得积分10
24秒前
小蘑菇应助在努力了采纳,获得10
25秒前
25秒前
请叫我风吹麦浪应助222采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356