Local-constraint transformer network for stock movement prediction

计算机科学 变压器 人工神经网络 粒子群优化
作者
Jincheng Hu
出处
期刊:International Journal of Computational Science and Engineering [Inderscience Publishers]
卷期号:24 (4): 429-437
标识
DOI:10.1504/ijcse.2021.10039986
摘要

Stock movement prediction is to predict the future movements of stocks for investment, which is challenging both for research and industry. Typically, stock movement is predicted based on financial news. However, existing prediction methods based on financial news directly utilise models for natural language processing such as recurrent neural networks and transformer, which are still incapable of effectively processing the key local information in financial news. To address this issue, local-constraint transformer network (LTN) is proposed in this paper for stock movement prediction. LTN leverages transformer network with local-constraint to encode the financial news, which can increase the attention weights of key local information. Moreover, since there are more difficult samples in financial news which are hard to be learnt, this paper further proposes a difficult-sample-balance loss function to train the network. This paper also researches the combination of financial news and stock price data for prediction. Experiments demonstrate that the proposed model outperforms several powerful existing methods on the datasets collected, and the stock price data can assist to improve the prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殊量完成签到,获得积分10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
rngay完成签到,获得积分10
2秒前
善学以致用应助卤蛋采纳,获得10
2秒前
2秒前
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
lucky李完成签到,获得积分10
4秒前
5秒前
自觉雨文完成签到,获得积分10
5秒前
恒星完成签到,获得积分10
5秒前
NexusExplorer应助KK采纳,获得10
6秒前
Zx_1993应助如意的秋白采纳,获得20
6秒前
6秒前
苗条的契关注了科研通微信公众号
7秒前
传奇3应助小狗乖乖怪采纳,获得10
7秒前
科研通AI5应助Yang采纳,获得10
8秒前
8秒前
wanci应助ZZZ采纳,获得30
9秒前
科研通AI5应助xuexin采纳,获得10
9秒前
hihigood完成签到,获得积分20
9秒前
9秒前
10秒前
请问发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193933
求助须知:如何正确求助?哪些是违规求助? 4376236
关于积分的说明 13628897
捐赠科研通 4231184
什么是DOI,文献DOI怎么找? 2320812
邀请新用户注册赠送积分活动 1319105
关于科研通互助平台的介绍 1269416