AI Creativity and the Human-AI Co-creation Model

创造力 人工智能 计算机科学 人机交互 认知科学 心理学 社会心理学
作者
Zhuohao Wu,Danwen Ji,Kaiwen Yu,Xianxu Zeng,Dingming Wu,Mohammad Shidujaman
出处
期刊:Lecture Notes in Computer Science 卷期号:: 171-190 被引量:62
标识
DOI:10.1007/978-3-030-78462-1_13
摘要

Artificial intelligence (AI) is bringing new possibilities to numerous fields. There have been a lot of discussions about the development of AI technologies and the challenges caused by AI such as job replacement and ethical issues. However, it’s far from enough to systematically discuss how to use AI creatively and how AI can enhance human creativity. After studying over 1,600 application cases across more than 45 areas, and analyzing related academic publications, we believe that focusing on the collaboration with AI will benefit us far more than dwelling on the competing against AI. “AI Creativity” is the concept we want to introduce here: the ability for human and AI to co-live and co-create by playing to each other’s strengths to achieve more. AI is a complement to human intelligence, and it consolidates wisdom from all achievements of mankind, making collaboration across time and space possible. AI empowers us throughout the entire creative process, and makes creativity more accessible and more inclusive than ever. The corresponding Human-AI Co-Creation Model we proposed explains the creative process in the era of AI, with new possibilities brought by AI in each phase. In addition, this model allows any “meaning-making” action to be enhanced by AI and delivered in a more efficient way. The emphasis on collaboration is not only an echo to the importance of teamwork, but is also a push for co-creation between human and AI. The study of application cases shows that AI Creativity has been making significant impact in various fields, bringing new possibilities to human society and individuals, as well as new opportunities and challenges in technology, society and education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
wxs完成签到,获得积分10
5秒前
YJ完成签到,获得积分10
6秒前
weng完成签到,获得积分10
7秒前
13秒前
开朗问晴发布了新的文献求助10
18秒前
儒雅的蜜粉完成签到,获得积分10
28秒前
Orange应助huang采纳,获得10
29秒前
满意的伊完成签到,获得积分10
31秒前
33秒前
39秒前
43秒前
喜悦的香之完成签到 ,获得积分10
44秒前
进击的巨人完成签到 ,获得积分10
46秒前
只有辣椒没有油完成签到 ,获得积分10
46秒前
huang发布了新的文献求助10
46秒前
科研通AI5应助sun采纳,获得10
48秒前
森森完成签到 ,获得积分10
54秒前
tangchao完成签到,获得积分10
58秒前
谢谢大佬们完成签到 ,获得积分10
1分钟前
小事完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xmqaq完成签到,获得积分10
1分钟前
隐形曼青应助小韩采纳,获得10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
慕青应助orchid采纳,获得10
1分钟前
1分钟前
1分钟前
sun发布了新的文献求助10
1分钟前
longer完成签到 ,获得积分10
1分钟前
小九完成签到,获得积分10
1分钟前
1分钟前
霍霍完成签到 ,获得积分10
1分钟前
LZJ完成签到 ,获得积分10
1分钟前
skbkbe完成签到 ,获得积分10
1分钟前
drift完成签到,获得积分10
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
眠眠清完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003648
捐赠科研通 2993705
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944