Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver

医学 脂肪变性 脂肪肝 非酒精性脂肪肝 接收机工作特性 金标准(测试) 限制 内科学 超声波 放射科 诊断准确性 肝活检 胃肠病学 人工智能 活检 疾病 工程类 机械工程 计算机科学
作者
Tsung-Hsien Chou,Hsing‐Jung Yeh,Chun‐Chao Chang,Jui‐Hsiang Tang,Wei‐Yu Kao,I-Chia Su,Chien‐Hung Li,Wei-Hao Chang,Chun‐Kai Huang,Herdiantri Sufriyana,Emily Chia‐Yu Su
出处
期刊:Journal of The Chinese Medical Association [Ovid Technologies (Wolters Kluwer)]
卷期号:84 (9): 842-850 被引量:31
标识
DOI:10.1097/jcma.0000000000000585
摘要

The prevalence of nonalcoholic fatty liver disease is increasing over time worldwide, with similar trends to those of diabetes and obesity. A liver biopsy, the gold standard of diagnosis, is not favored due to its invasiveness. Meanwhile, noninvasive evaluation methods of fatty liver are still either very expensive or demonstrate poor diagnostic performances, thus, limiting their applications. We developed neural network-based models to assess fatty liver and classify the severity using B-mode ultrasound (US) images.We followed standards for reporting of diagnostic accuracy guidelines to report this study. In this retrospective study, we utilized B-mode US images from a consecutive series of patients to develop four-class, two-class, and three-class diagnostic prediction models. The images were eligible if confirmed by at least two gastroenterologists. We compared pretrained convolutional neural network models, consisting of visual geometry group (VGG)19, ResNet-50 v2, MobileNet v2, Xception, and Inception v2. For validation, we utilized 20% of the dataset resulting in >100 images for each severity category.There were 21,855 images from 2,070 patients classified as normal (N = 11,307), mild (N = 4,467), moderate (N = 3,155), or severe steatosis (N = 2,926). We used ResNet-50 v2 for the final model as the best ones. The areas under the receiver operating characteristic curves were 0.974 (mild steatosis vs others), 0.971 (moderate steatosis vs others), 0.981 (severe steatosis vs others), 0.985 (any severity vs normal), and 0.996 (moderate-to-severe steatosis/clinically abnormal vs normal-to-mild steatosis/clinically normal).Our deep learning models achieved comparable predictive performances to the most accurate, yet expensive, noninvasive diagnostic methods for fatty liver. Because of the discriminative ability, including for mild steatosis, significant impacts on clinical applications for fatty liver are expected. However, we need to overcome machine-dependent variation, motion artifacts, lacking of second confirmation from any other tools, and hospital-dependent regional bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助llll采纳,获得10
1秒前
SciGPT应助梅花鹿采纳,获得10
1秒前
jxp完成签到,获得积分10
1秒前
Grayball应助2393843435采纳,获得10
2秒前
2秒前
副本发布了新的文献求助10
2秒前
Bin_Lau完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
woshizhengde完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
科研通AI5应助坦率的果汁采纳,获得10
4秒前
豆果完成签到,获得积分10
5秒前
科研通AI5应助Pwrry采纳,获得10
5秒前
5秒前
Tu发布了新的文献求助10
5秒前
Jasper应助fy采纳,获得10
5秒前
TT关闭了TT文献求助
6秒前
roachy完成签到,获得积分10
6秒前
7秒前
doctorbba完成签到,获得积分10
8秒前
xiying发布了新的文献求助10
8秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197