已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver

医学 脂肪变性 脂肪肝 非酒精性脂肪肝 接收机工作特性 金标准(测试) 限制 内科学 超声波 放射科 诊断准确性 肝活检 胃肠病学 人工智能 活检 疾病 工程类 机械工程 计算机科学
作者
Tsung-Hsien Chou,Hsing‐Jung Yeh,Chun‐Chao Chang,Jui‐Hsiang Tang,Wei‐Yu Kao,I-Chia Su,Chien‐Hung Li,Wei-Hao Chang,Chun‐Kai Huang,Herdiantri Sufriyana,Emily Chia‐Yu Su
出处
期刊:Journal of The Chinese Medical Association [Ovid Technologies (Wolters Kluwer)]
卷期号:84 (9): 842-850 被引量:31
标识
DOI:10.1097/jcma.0000000000000585
摘要

The prevalence of nonalcoholic fatty liver disease is increasing over time worldwide, with similar trends to those of diabetes and obesity. A liver biopsy, the gold standard of diagnosis, is not favored due to its invasiveness. Meanwhile, noninvasive evaluation methods of fatty liver are still either very expensive or demonstrate poor diagnostic performances, thus, limiting their applications. We developed neural network-based models to assess fatty liver and classify the severity using B-mode ultrasound (US) images.We followed standards for reporting of diagnostic accuracy guidelines to report this study. In this retrospective study, we utilized B-mode US images from a consecutive series of patients to develop four-class, two-class, and three-class diagnostic prediction models. The images were eligible if confirmed by at least two gastroenterologists. We compared pretrained convolutional neural network models, consisting of visual geometry group (VGG)19, ResNet-50 v2, MobileNet v2, Xception, and Inception v2. For validation, we utilized 20% of the dataset resulting in >100 images for each severity category.There were 21,855 images from 2,070 patients classified as normal (N = 11,307), mild (N = 4,467), moderate (N = 3,155), or severe steatosis (N = 2,926). We used ResNet-50 v2 for the final model as the best ones. The areas under the receiver operating characteristic curves were 0.974 (mild steatosis vs others), 0.971 (moderate steatosis vs others), 0.981 (severe steatosis vs others), 0.985 (any severity vs normal), and 0.996 (moderate-to-severe steatosis/clinically abnormal vs normal-to-mild steatosis/clinically normal).Our deep learning models achieved comparable predictive performances to the most accurate, yet expensive, noninvasive diagnostic methods for fatty liver. Because of the discriminative ability, including for mild steatosis, significant impacts on clinical applications for fatty liver are expected. However, we need to overcome machine-dependent variation, motion artifacts, lacking of second confirmation from any other tools, and hospital-dependent regional bias.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独指蜗牛完成签到 ,获得积分10
2秒前
科研通AI6.2应助lucky采纳,获得10
2秒前
tzy发布了新的文献求助10
3秒前
聪慧鸭子发布了新的文献求助10
4秒前
Pearson完成签到,获得积分10
6秒前
Orange应助虚幻雁荷采纳,获得10
7秒前
12秒前
ashley完成签到,获得积分10
13秒前
yy完成签到,获得积分20
16秒前
泥蝶完成签到 ,获得积分10
16秒前
likever22026完成签到 ,获得积分10
17秒前
ashley发布了新的文献求助10
17秒前
852应助pattrick采纳,获得10
21秒前
22秒前
共享精神应助科研通管家采纳,获得10
24秒前
yy发布了新的文献求助10
27秒前
JoeyJin完成签到,获得积分10
28秒前
傻傻的从梦完成签到 ,获得积分10
30秒前
府中园马发布了新的文献求助10
32秒前
121卡卡完成签到 ,获得积分10
32秒前
昏睡的乌冬面完成签到 ,获得积分10
35秒前
默默小鸽子完成签到 ,获得积分10
36秒前
37秒前
cc完成签到,获得积分10
37秒前
墨白白发布了新的文献求助10
43秒前
可爱的函函应助yy采纳,获得10
43秒前
慕青应助kangwen采纳,获得30
44秒前
李大王完成签到 ,获得积分10
50秒前
loii举报苏格拉没有底求助涉嫌违规
50秒前
52秒前
doctor2023完成签到,获得积分10
56秒前
平平无奇发布了新的文献求助10
57秒前
58秒前
pattrick发布了新的文献求助10
1分钟前
小谢同学完成签到 ,获得积分10
1分钟前
GingerF完成签到,获得积分0
1分钟前
hnxxangel完成签到,获得积分10
1分钟前
Lagom发布了新的文献求助10
1分钟前
金蛋蛋完成签到 ,获得积分10
1分钟前
quan关注了科研通微信公众号
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875385
求助须知:如何正确求助?哪些是违规求助? 6516066
关于积分的说明 15676950
捐赠科研通 4993314
什么是DOI,文献DOI怎么找? 2691433
邀请新用户注册赠送积分活动 1633718
关于科研通互助平台的介绍 1591362