Embodied greenhouse gas emissions from building China’s large-scale power transmission infrastructure

温室气体 包含能量 减缓气候变化 中国 动力传输 环境科学 自然资源经济学 业务 气候变化 环境资源管理 功率(物理) 地理 经济 热力学 物理 考古 生物 量子力学 生态学
作者
Wendong Wei,Jiashuo Li,Bin Chen,Meng Wang,Pengfei Zhang,Dabo Guan,Jing Meng,Haoqi Qian,Yaohua Cheng,Chongqing Kang,Kuishuang Feng,Qing Yang,Ning Zhang,Xi Liang,Jinjun Xue
出处
期刊:Nature sustainability [Nature Portfolio]
卷期号:4 (8): 739-747 被引量:120
标识
DOI:10.1038/s41893-021-00704-8
摘要

China has built the world’s largest power transmission infrastructure by consuming massive volumes of greenhouse gas- (GHG-) intensive products such as steel. A quantitative analysis of the carbon implications of expanding the transmission infrastructure would shed light on the trade-offs among three connected dimensions of sustainable development, namely, climate change mitigation, energy access and infrastructure development. By collecting a high-resolution inventory, we developed an assessment framework of, and analysed, the GHG emissions caused by China’s power transmission infrastructure construction during 1990–2017. We show that cumulative embodied GHG emissions have dramatically increased by more than 7.3 times those in 1990, reaching 0.89 GtCO2-equivalent in 2017. Over the same period, the gaps between the well-developed eastern and less-developed western regions in China have gradually narrowed. Voltage class, transmission-line length and terrain were important factors that influenced embodied GHG emissions. We discuss measures for the mitigation of GHG emissions from power transmission development that can inform global low-carbon infrastructure transitions. Expanding energy infrastructure has been vital to China’s development plans, but has had negative consequences. This study finds that in 2017 the level of embodied greenhouse gas emissions from the expansion of China’s power transmission infrastructure increased by more than 7.3 times that in 1990.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顽强的小刘应助小吕小吕采纳,获得20
刚刚
嘉博学长发布了新的文献求助30
1秒前
1秒前
研友_nEjYyZ发布了新的文献求助10
1秒前
一一完成签到,获得积分10
2秒前
完美世界应助Carolna采纳,获得10
2秒前
今后应助俊秀的映之采纳,获得10
2秒前
xxx发布了新的文献求助10
2秒前
2秒前
叶黄戍发布了新的文献求助10
3秒前
3秒前
彭于彦祖应助bxhdb采纳,获得10
3秒前
3秒前
3139813319完成签到,获得积分10
4秒前
解剖六楼那小哥完成签到 ,获得积分10
4秒前
4秒前
今后应助白茶泡泡球采纳,获得10
4秒前
田様应助复杂听筠采纳,获得10
4秒前
NexusExplorer应助Juzi采纳,获得10
4秒前
CYL07发布了新的文献求助10
4秒前
aigj完成签到 ,获得积分10
5秒前
5秒前
5秒前
顺利煎蛋完成签到,获得积分10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
syvshc应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
彳亍1117应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
科目三应助科研通管家采纳,获得10
7秒前
syvshc应助科研通管家采纳,获得10
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571