已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The extraction of early warning features for predicting financial distress based on XGBoost model and shap framework

预警系统 机器学习 人工智能 苦恼 计算机科学 逻辑回归 财务 预警系统 财务困境 精算学 心理学 业务 金融体系 电信 心理治疗师
作者
Yang He,Liying Li,Yi Cai,Jiapei Li,George Xianzhi Yuan
出处
期刊:International journal of financial engineering [World Scientific]
卷期号:08 (03): 2141004-2141004 被引量:6
标识
DOI:10.1142/s2424786321410048
摘要

The purpose of this paper is to establish a framework for the extraction of early warning risk features for the predicting financial distress based on XGBoost model and SHAP. It is well known that the way to construct early warning risk features to predict financial distress of companies is very important, and by comparing with the traditional statistical methods, though the data-driven machine learning for the financial early warning, modelling has a better performance in terms of prediction accuracy, but it also brings the difficulty such as the one the corresponding model may be not explained well. Recently, eXtreme Gradient Boosting (XGBoost), an ensemble learning algorithm based on extreme gradient boosting, has become a hot topic in the area of machine learning research field due to its strong nonlinear information recognition ability and high prediction accuracy in the practice. In this study, the XGBoost algorithm is used to extract early warning features for the predicting financial distress for listed companies, with 76 financial risk features from seven categories of aspects, and 14 non-financial risk features from four categories of aspects, which are collected to establish an early warning system for the predication of financial distress. With applications, we conduct the empirical testing respect to AUC, KS and Kappa, the numerical results show that by comparing with the Logistic model, our method based on XGBoost model established in this paper has much better ability to predict the financial distress risk of listed companies. Moreover, under the framework of SHAP (SHAPley Additive exPlanations), we are able to give a reasonable explanation for important risk features and influencing ways affecting the financial distress visibly. The results given by this paper show that the XGBoost approach to model early warning features for financial distress does not only preform a better prediction accuracy, but also is explainable, which is significant for the identification of early warning to the financial distress risk for listed companies in the practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
小白果果发布了新的文献求助10
6秒前
小红鲸完成签到,获得积分10
8秒前
klyy516发布了新的文献求助10
8秒前
Coldpal发布了新的文献求助10
8秒前
谷子完成签到 ,获得积分10
9秒前
xushuojie发布了新的文献求助10
10秒前
10秒前
多情的续完成签到 ,获得积分10
13秒前
bjbmtxy发布了新的文献求助10
18秒前
上官老黑完成签到 ,获得积分10
20秒前
义气珩完成签到,获得积分10
21秒前
fatdudu完成签到,获得积分10
22秒前
28秒前
双眼皮跳蚤完成签到,获得积分10
29秒前
orixero应助岁华采纳,获得10
32秒前
段誉完成签到 ,获得积分10
32秒前
年轻的醉冬完成签到 ,获得积分10
32秒前
zzzz完成签到,获得积分10
34秒前
顺利思远发布了新的文献求助10
34秒前
34秒前
dddz完成签到,获得积分10
34秒前
m1nt完成签到,获得积分0
37秒前
今后应助zzzz采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
37秒前
杜杨帆完成签到 ,获得积分10
42秒前
温暖大米完成签到 ,获得积分10
43秒前
脑洞疼应助尼莫采纳,获得10
44秒前
SciGPT应助dddz采纳,获得10
46秒前
香蕉觅云应助舒心的芮采纳,获得10
47秒前
KEyanba完成签到,获得积分0
48秒前
zsyf完成签到,获得积分10
48秒前
zf2023完成签到,获得积分10
49秒前
樱悼柳雪完成签到,获得积分0
49秒前
CodeCraft应助zqcn采纳,获得10
49秒前
充电宝应助ale采纳,获得10
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526413
求助须知:如何正确求助?哪些是违规求助? 3106815
关于积分的说明 9281607
捐赠科研通 2804333
什么是DOI,文献DOI怎么找? 1539426
邀请新用户注册赠送积分活动 716552
科研通“疑难数据库(出版商)”最低求助积分说明 709520