Towards an understanding of teacher attrition: A meta-analysis of burnout, job satisfaction, and teachers’ intentions to quit

损耗 工作满意度 倦怠 心理学 荟萃分析 社会心理学 应用心理学 临床心理学 医学 内科学 牙科
作者
Daniel J. Madigan,Lisa E. Kim
出处
期刊:Teaching and Teacher Education [Elsevier]
卷期号:105: 103425-103425 被引量:282
标识
DOI:10.1016/j.tate.2021.103425
摘要

Teacher attrition continues to be a concern for school leaders and policymakers in many countries. To help further understand why teachers leave the profession and to inform the development of targeted interventions to reduce this phenomenon, in the present study we aimed to provide the first meta-analytic examination of (a) the relationship between burnout and teachers' intentions to quit, (b) the relationship between job satisfaction and teachers' intentions to quit, and (c) whether burnout or job satisfaction is more important in predicting teachers' intentions to quit. Random-effects meta-analyses indicated that the three dimensions of burnout showed significant positive relationships with teachers' intentions to quit (exhaustion [r+ = .41], depersonalization [r+ = 0.32], and reduced accomplishment [r+ = 0.21]). In addition, there was evidence that the strength of these relationships has increased over time. Job satisfaction showed a significant negative relationship with teachers' intentions to quit (r+ = −0.40). Burnout dimensions also showed significant negative relationships with job satisfaction (exhaustion [r+ = −0.42], depersonalization [r+ = −0.38], and reduced accomplishment [r+ = −0.30]). Multiple regression analyses based on these meta-analytic effects indicated that burnout and job satisfaction together explained 27% of the variance in teachers' intentions to quit. Finally, relative importance analyses indicated that burnout symptoms accounted for the majority of this explained variance. These findings suggest that burnout and job satisfaction are highly important in predicting teachers’ intentions to quit, but it appears that, although they are related, burnout may confer a greater risk than job satisfaction confers protection, and this risk may be increasing over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nico完成签到,获得积分10
1秒前
可爱的函函应助Tsin778采纳,获得10
1秒前
科研通AI2S应助曹志伟采纳,获得10
1秒前
1秒前
赘婿应助Thinkol采纳,获得10
1秒前
2秒前
YuexYue完成签到,获得积分10
3秒前
英姑应助cckk采纳,获得10
3秒前
hkh发布了新的文献求助10
3秒前
3秒前
3秒前
VISIN发布了新的文献求助10
3秒前
doudou发布了新的文献求助10
3秒前
喜羊羊发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
LLL完成签到,获得积分10
5秒前
chr完成签到,获得积分10
5秒前
斯文败类应助sadd采纳,获得10
5秒前
赵慧完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
nico发布了新的文献求助10
5秒前
懒羊羊关注了科研通微信公众号
6秒前
牛马人发布了新的文献求助10
7秒前
7秒前
Sherlock完成签到,获得积分10
7秒前
酷波er应助徐爱琳采纳,获得10
7秒前
7秒前
小北发布了新的文献求助10
8秒前
嘉嘉完成签到,获得积分10
8秒前
PANXX完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
羊羊发布了新的文献求助10
8秒前
大气月饼发布了新的文献求助10
9秒前
流星砸地鼠完成签到 ,获得积分10
10秒前
10秒前
茹茹发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210