癌变
糖酵解
膀胱癌
巴基斯坦卢比
厌氧糖酵解
癌症
癌症研究
医学
内科学
新陈代谢
丙酮酸激酶
作者
Jingzi Wang,Wei Zhu,Jie Han,Xiao Yang,Rui Zhou,Hongcheng Lu,Hao Yu,Wenbo Yuan,Peng‐Chao Li,Jun Tao,Qiang Lü,Ji‐Fu Wei,Haiwei Yang
摘要
As a rate-limiting enzyme of glycolysis, pyruvate kinase muscle isozyme M2 (PKM2) participates in tumor metabolism and growth. The regulatory network of PKM2 in cancer is complex and has not been fully studied in bladder cancer. The 5-methylcytidine (m5C) modification in PKM2 mRNA might participate in the pathogenesis of bladder cancer and need to be further clarified. This study aimed to investigate the biological function and regulatory mechanism of PKM2 in bladder cancer.The expression of PKM2 and Aly/REF export factor (ALYREF) was measured by Western blotting, qRT-PCR, and immunohistochemistry. The bioprocesses of bladder cancer cells were demonstrated by a series of experiments in vitro and in vivo. RNA immunoprecipitation, RNA-sequencing, and dual-luciferase reporter assays were conducted to explore the potential regulatory mechanisms of PKM2 in bladder cancer.In bladder cancer, we first demonstrated that ALYREF stabilized PKM2 mRNA and bound to its m5C sites in 3'-untranslated regions. Overexpression of ALYREF promoted bladder cancer cell proliferation by PKM2-mediated glycolysis. Furthermore, high expression of PKM2 and ALYREF predicted poor survival in bladder cancer patients. Finally, we found that hypoxia-inducible factor-1alpha (HIF-1α) indirectly up-regulated the expression of PKM2 by activating ALYREF in addition to activating its transcription directly.The m5C modification in PKM2 mRNA in the HIF-1α/ALYREF/PKM2 axis may promote the glucose metabolism of bladder cancer, providing a new promising therapeutic target for bladder cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI