Flow-cytometry and functional evaluation of the CD39/CD73 adenosinergic immunosuppressive axis in patients with Sézary syndrome

腺苷 腺苷酸 免疫系统 腺苷脱氨酶 流式细胞术 肌苷 脱氧甲氧霉素 生物 免疫学 癌症研究 化学 医学 内科学 内分泌学 腺苷受体 兴奋剂 受体
作者
P Quaglino,Ada Funaro,Erika Ortolan,Rebecca Senetta,Gianluca Avallone,Martina Merli,Cristiano Bracci,Maria Rebecca Rumore,Yuliya Yakymiv,Maria Teresa Fierro
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:156: S12-S13 被引量:1
标识
DOI:10.1016/s0959-8049(21)00649-3
摘要

Sézary syndrome (SS) is a primary cutaneous T-cell lymphoma characterized by measurable levels of malignant lymphocytes in the blood, and progressive impairment of the immune response. Among the mechanisms of immune modulation, adenosine can impair anti-tumor immunity, through the attenuation of protective effector cells, including T and NK cells, and by enhancing the suppressive capacity of T regulatory cells. CD39 and CD73 nucleotide-metabolizing enzymes are involved in the adenosine-generating pathway: CD39 cleaves ATP and ADP down into AMP, which is converted into adenosine by CD73. The extracellular adenosine deaminase/CD26 complex catalyzes the deamination of adenosine to inosine, thus reducing the adenosine levels. The objective of this study were: to investigate the expression of the of CD39 and CD73 nucleotide-metabolizing ectoenzymes in peripheral blood from SS patients; to define the contribution of the CD39/CD73 adenosinergic immunosuppressive pathway to tumor escape from immune response and immune dysfunctions in patients with SS. CD39 and CD73 expression analyzed in whole blood with multiparametric flow-cytometry from SS patients (n=10) and healthy donors (HD, n=11) revealed altered expression of CD39 and CD73 in SS patients compared to HD. Two subgroups of patients can be identified based on the mutually exclusive overexpression of CD39 or CD73 in CD4+ T cells. Indeed, 7 out of 10 patients had high CD39, while 3 had high CD73. CD4+T cells with high CD39 have low CD73, vice versa those with high CD73 have low CD39. To define whether CD39 and CD73 were biologically active, we compared the ability of peripheral blood CD4+T cells from SS patients and HD to hydrolyze ATP and to convert AMP into adenosine, in vitro. Briefly, CD4+ Tcells from SS/HD were seeded in 48-well plates in HBSS, pretreated or not with specific inhibitors for 1h and then incubated with exogenous (e) eATP (patients with high CD39) or eAMP (patients with high CD73) at 37°C. After 1 h incubation, analyses of the supernatant were performed with an RP-HPLC. Results indicated that CD4+ T cells from SS patients with high levels of CD39 showed an increased ability to hydrolyze ATP with increased generation of AMP compared to normal control cells. In parallel, CD4+ T cells with high levels of CD73 showed increased conversion of AMP into ADO, respect to normal control cells. The aberrant expression of CD39 and CD73 along with loss of CD26 expression in circulating Sézary cells suggest that the sequential activity of CD39 and CD73 ectoenzymes scavenges ATP and generates immunosuppressive adenosine in the tumor microenvironment contributing to tumor immune escape. The results inferred from this study are the starting point for more comprehensive studies towards the development of new therapies targeting the CD39/CD73 adenosinergic axis in order to overcome tumor immunosuppression, allowing the induction of effective anti-tumor immune response. Sézary syndrome (SS) is a primary cutaneous T-cell lymphoma characterized by measurable levels of malignant lymphocytes in the blood, and progressive impairment of the immune response. Among the mechanisms of immune modulation, adenosine can impair anti-tumor immunity, through the attenuation of protective effector cells, including T and NK cells, and by enhancing the suppressive capacity of T regulatory cells. CD39 and CD73 nucleotide-metabolizing enzymes are involved in the adenosine-generating pathway: CD39 cleaves ATP and ADP down into AMP, which is converted into adenosine by CD73. The extracellular adenosine deaminase/CD26 complex catalyzes the deamination of adenosine to inosine, thus reducing the adenosine levels. The objective of this study were: to investigate the expression of the of CD39 and CD73 nucleotide-metabolizing ectoenzymes in peripheral blood from SS patients; to define the contribution of the CD39/CD73 adenosinergic immunosuppressive pathway to tumor escape from immune response and immune dysfunctions in patients with SS. CD39 and CD73 expression analyzed in whole blood with multiparametric flow-cytometry from SS patients (n=10) and healthy donors (HD, n=11) revealed altered expression of CD39 and CD73 in SS patients compared to HD. Two subgroups of patients can be identified based on the mutually exclusive overexpression of CD39 or CD73 in CD4+ T cells. Indeed, 7 out of 10 patients had high CD39, while 3 had high CD73. CD4+T cells with high CD39 have low CD73, vice versa those with high CD73 have low CD39. To define whether CD39 and CD73 were biologically active, we compared the ability of peripheral blood CD4+T cells from SS patients and HD to hydrolyze ATP and to convert AMP into adenosine, in vitro. Briefly, CD4+ Tcells from SS/HD were seeded in 48-well plates in HBSS, pretreated or not with specific inhibitors for 1h and then incubated with exogenous (e) eATP (patients with high CD39) or eAMP (patients with high CD73) at 37°C. After 1 h incubation, analyses of the supernatant were performed with an RP-HPLC. Results indicated that CD4+ T cells from SS patients with high levels of CD39 showed an increased ability to hydrolyze ATP with increased generation of AMP compared to normal control cells. In parallel, CD4+ T cells with high levels of CD73 showed increased conversion of AMP into ADO, respect to normal control cells. The aberrant expression of CD39 and CD73 along with loss of CD26 expression in circulating Sézary cells suggest that the sequential activity of CD39 and CD73 ectoenzymes scavenges ATP and generates immunosuppressive adenosine in the tumor microenvironment contributing to tumor immune escape. The results inferred from this study are the starting point for more comprehensive studies towards the development of new therapies targeting the CD39/CD73 adenosinergic axis in order to overcome tumor immunosuppression, allowing the induction of effective anti-tumor immune response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助dxm采纳,获得10
1秒前
Cyber_relic完成签到,获得积分10
2秒前
ding完成签到,获得积分10
2秒前
2秒前
3秒前
酷波er应助coast采纳,获得10
4秒前
4秒前
文文发布了新的文献求助10
6秒前
南门完成签到,获得积分10
6秒前
温以凡发布了新的文献求助10
6秒前
科研通AI6应助机灵铭采纳,获得10
6秒前
文静的炳发布了新的文献求助10
6秒前
7秒前
熊小兰发布了新的文献求助10
7秒前
djbj2022完成签到,获得积分10
7秒前
慕青应助hhh采纳,获得10
8秒前
韩立发布了新的文献求助10
8秒前
8秒前
chili完成签到,获得积分10
9秒前
忐忑的丝完成签到,获得积分10
10秒前
刘刘佳发布了新的文献求助10
12秒前
12秒前
14秒前
djbj2022发布了新的文献求助10
14秒前
fengfeng发布了新的文献求助10
15秒前
16秒前
16秒前
薛微有点甜完成签到,获得积分10
17秒前
orixero应助韩立采纳,获得10
18秒前
美满的尔珍完成签到,获得积分10
19秒前
sekiro发布了新的文献求助10
19秒前
鬼无二心发布了新的文献求助10
19秒前
烟花应助fengfeng采纳,获得10
21秒前
22秒前
哈哈哈哈哈完成签到 ,获得积分10
22秒前
镜哥完成签到,获得积分10
23秒前
24秒前
27秒前
研友_VZG7GZ应助命苦科研人采纳,获得10
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930