亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Flow-cytometry and functional evaluation of the CD39/CD73 adenosinergic immunosuppressive axis in patients with Sézary syndrome

腺苷 腺苷酸 免疫系统 腺苷脱氨酶 流式细胞术 肌苷 脱氧甲氧霉素 生物 免疫学 癌症研究 化学 医学 内科学 内分泌学 腺苷受体 兴奋剂 受体
作者
P Quaglino,Ada Funaro,Erika Ortolan,Rebecca Senetta,Gianluca Avallone,Martina Merli,Cristiano Bracci,Maria Rebecca Rumore,Yuliya Yakymiv,Maria Teresa Fierro
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:156: S12-S13 被引量:1
标识
DOI:10.1016/s0959-8049(21)00649-3
摘要

Sézary syndrome (SS) is a primary cutaneous T-cell lymphoma characterized by measurable levels of malignant lymphocytes in the blood, and progressive impairment of the immune response. Among the mechanisms of immune modulation, adenosine can impair anti-tumor immunity, through the attenuation of protective effector cells, including T and NK cells, and by enhancing the suppressive capacity of T regulatory cells. CD39 and CD73 nucleotide-metabolizing enzymes are involved in the adenosine-generating pathway: CD39 cleaves ATP and ADP down into AMP, which is converted into adenosine by CD73. The extracellular adenosine deaminase/CD26 complex catalyzes the deamination of adenosine to inosine, thus reducing the adenosine levels. The objective of this study were: to investigate the expression of the of CD39 and CD73 nucleotide-metabolizing ectoenzymes in peripheral blood from SS patients; to define the contribution of the CD39/CD73 adenosinergic immunosuppressive pathway to tumor escape from immune response and immune dysfunctions in patients with SS. CD39 and CD73 expression analyzed in whole blood with multiparametric flow-cytometry from SS patients (n=10) and healthy donors (HD, n=11) revealed altered expression of CD39 and CD73 in SS patients compared to HD. Two subgroups of patients can be identified based on the mutually exclusive overexpression of CD39 or CD73 in CD4+ T cells. Indeed, 7 out of 10 patients had high CD39, while 3 had high CD73. CD4+T cells with high CD39 have low CD73, vice versa those with high CD73 have low CD39. To define whether CD39 and CD73 were biologically active, we compared the ability of peripheral blood CD4+T cells from SS patients and HD to hydrolyze ATP and to convert AMP into adenosine, in vitro. Briefly, CD4+ Tcells from SS/HD were seeded in 48-well plates in HBSS, pretreated or not with specific inhibitors for 1h and then incubated with exogenous (e) eATP (patients with high CD39) or eAMP (patients with high CD73) at 37°C. After 1 h incubation, analyses of the supernatant were performed with an RP-HPLC. Results indicated that CD4+ T cells from SS patients with high levels of CD39 showed an increased ability to hydrolyze ATP with increased generation of AMP compared to normal control cells. In parallel, CD4+ T cells with high levels of CD73 showed increased conversion of AMP into ADO, respect to normal control cells. The aberrant expression of CD39 and CD73 along with loss of CD26 expression in circulating Sézary cells suggest that the sequential activity of CD39 and CD73 ectoenzymes scavenges ATP and generates immunosuppressive adenosine in the tumor microenvironment contributing to tumor immune escape. The results inferred from this study are the starting point for more comprehensive studies towards the development of new therapies targeting the CD39/CD73 adenosinergic axis in order to overcome tumor immunosuppression, allowing the induction of effective anti-tumor immune response. Sézary syndrome (SS) is a primary cutaneous T-cell lymphoma characterized by measurable levels of malignant lymphocytes in the blood, and progressive impairment of the immune response. Among the mechanisms of immune modulation, adenosine can impair anti-tumor immunity, through the attenuation of protective effector cells, including T and NK cells, and by enhancing the suppressive capacity of T regulatory cells. CD39 and CD73 nucleotide-metabolizing enzymes are involved in the adenosine-generating pathway: CD39 cleaves ATP and ADP down into AMP, which is converted into adenosine by CD73. The extracellular adenosine deaminase/CD26 complex catalyzes the deamination of adenosine to inosine, thus reducing the adenosine levels. The objective of this study were: to investigate the expression of the of CD39 and CD73 nucleotide-metabolizing ectoenzymes in peripheral blood from SS patients; to define the contribution of the CD39/CD73 adenosinergic immunosuppressive pathway to tumor escape from immune response and immune dysfunctions in patients with SS. CD39 and CD73 expression analyzed in whole blood with multiparametric flow-cytometry from SS patients (n=10) and healthy donors (HD, n=11) revealed altered expression of CD39 and CD73 in SS patients compared to HD. Two subgroups of patients can be identified based on the mutually exclusive overexpression of CD39 or CD73 in CD4+ T cells. Indeed, 7 out of 10 patients had high CD39, while 3 had high CD73. CD4+T cells with high CD39 have low CD73, vice versa those with high CD73 have low CD39. To define whether CD39 and CD73 were biologically active, we compared the ability of peripheral blood CD4+T cells from SS patients and HD to hydrolyze ATP and to convert AMP into adenosine, in vitro. Briefly, CD4+ Tcells from SS/HD were seeded in 48-well plates in HBSS, pretreated or not with specific inhibitors for 1h and then incubated with exogenous (e) eATP (patients with high CD39) or eAMP (patients with high CD73) at 37°C. After 1 h incubation, analyses of the supernatant were performed with an RP-HPLC. Results indicated that CD4+ T cells from SS patients with high levels of CD39 showed an increased ability to hydrolyze ATP with increased generation of AMP compared to normal control cells. In parallel, CD4+ T cells with high levels of CD73 showed increased conversion of AMP into ADO, respect to normal control cells. The aberrant expression of CD39 and CD73 along with loss of CD26 expression in circulating Sézary cells suggest that the sequential activity of CD39 and CD73 ectoenzymes scavenges ATP and generates immunosuppressive adenosine in the tumor microenvironment contributing to tumor immune escape. The results inferred from this study are the starting point for more comprehensive studies towards the development of new therapies targeting the CD39/CD73 adenosinergic axis in order to overcome tumor immunosuppression, allowing the induction of effective anti-tumor immune response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenchen发布了新的文献求助10
9秒前
karstbing发布了新的文献求助30
21秒前
开朗白山完成签到,获得积分10
30秒前
顺颂时祺完成签到,获得积分20
39秒前
金晓完成签到,获得积分10
43秒前
顺颂时祺发布了新的文献求助10
47秒前
moumou完成签到 ,获得积分10
50秒前
所所应助ice采纳,获得10
51秒前
由道罡完成签到 ,获得积分10
51秒前
希望天下0贩的0应助annathd采纳,获得30
55秒前
annathd完成签到,获得积分10
1分钟前
1分钟前
加菲丰丰完成签到,获得积分0
1分钟前
chenchen完成签到,获得积分10
1分钟前
1分钟前
思源应助lyy采纳,获得10
1分钟前
annathd发布了新的文献求助30
1分钟前
Ariel完成签到 ,获得积分10
1分钟前
糖糖糖feng源完成签到,获得积分20
1分钟前
1分钟前
雨下一整晚完成签到 ,获得积分10
1分钟前
1分钟前
21145077发布了新的文献求助10
1分钟前
FLY完成签到,获得积分10
1分钟前
lyy发布了新的文献求助10
1分钟前
73完成签到 ,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
AL完成签到,获得积分10
1分钟前
AL发布了新的文献求助10
2分钟前
橙子完成签到 ,获得积分10
2分钟前
2分钟前
ice发布了新的文献求助10
2分钟前
英勇明雪完成签到 ,获得积分10
2分钟前
一念莲花舟完成签到 ,获得积分10
2分钟前
wzm发布了新的文献求助10
2分钟前
团子发布了新的文献求助20
2分钟前
把饭拼好给你完成签到 ,获得积分10
2分钟前
ice完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634690
求助须知:如何正确求助?哪些是违规求助? 4731782
关于积分的说明 14988874
捐赠科研通 4792418
什么是DOI,文献DOI怎么找? 2559500
邀请新用户注册赠送积分活动 1519811
关于科研通互助平台的介绍 1479917