Transfer Learning Strategy Based on Unsupervised Learning and Ensemble Learning for Breast Cancer Molecular Subtype Prediction Using Dynamic Contrast‐Enhanced MRI

人工智能 学习迁移 计算机科学 深度学习 集成学习 对比度(视觉) 磁共振成像 机器学习 模式识别(心理学) 接收机工作特性 试验装置 集合预报 动态增强MRI 乳腺癌 癌症 放射科 医学 内科学
作者
Rong Sun,Xuewen Hou,Xiujuan Li,Yuanzhong Xie,Shengdong Nie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (5): 1518-1534 被引量:17
标识
DOI:10.1002/jmri.27955
摘要

Background Imaging‐driven deep learning strategies focus on training from scratch and transfer learning. However, the performance of training from scratch is often impeded by the lack of large‐scale labeled training data. Additionally, owing to the differences between source and target domains, analyzing medical image tasks satisfactorily via transfer learning based on ImageNet is difficult. Purpose To investigate two transfer learning algorithms for breast cancer molecular subtype prediction (luminal and non‐luminal) based on unsupervised pre‐training and ensemble learning: M_EL and B_EL, using malignant and benign datasets as the source domain, respectively. Study Type Retrospective. Population Eight hundred and thirty‐three female patients with histologically confirmed breast lesions (567 benign and 266 malignant cases) were selected. In the 5‐fold cross‐validation, the malignant cohort was randomly divided into 5 subsets to form a training set (80%) and a validation set (20%). Field Strength/Sequence 3.0 T, dynamic contrast‐enhanced magnetic resonance imaging ( DCE ‐ MRI) using T1 ‐weighted high‐resolution isotropic volume examination. Assessment First, three datasets acquired at different times post‐contrast were preprocessed as unlabeled source domains. Second, three baseline networks corresponding to the different MRI post‐contrast phases were built, optimized by a combination of mutual information maximization between high‐ and low‐level representations and prior distribution constraints. Next, the pre‐trained networks were fine‐tuned on the labeled target domain. Finally, prediction results were integrated using weighted voting‐based ensemble learning. Statistical Tests Mean accuracy, precision, specificity, and area under receiver operating characteristic curve (AUC) were obtained with 5‐fold cross‐validation. P < 0.05 was considered to be statistically significant. Results Compared with a convolutional long short‐term memory network, pre‐trained VGG‐16, VGG‐19, and DenseNet‐121 from ImageNet, M_EL and B_EL exhibited significantly more optimized prediction performance (specificity: 90.5% and 89.9%; accuracy: 82.6% and 81.1%; precision: 91.2% and 90.9%; AUC: 0.836 and 0.823, respectively). Data Conclusion Transfer learning based on unsupervised pre‐training may facilitate automatic prediction of breast cancer molecular subtypes. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小浩发布了新的文献求助10
3秒前
oceanao应助十一采纳,获得10
3秒前
4秒前
fanfei发布了新的文献求助10
5秒前
生动的水蜜桃完成签到 ,获得积分10
7秒前
pathway完成签到,获得积分10
8秒前
9秒前
安静静槐完成签到,获得积分20
9秒前
天天快乐应助小刘要加油采纳,获得10
10秒前
12秒前
12秒前
13秒前
嗷呜嗷呜完成签到,获得积分10
13秒前
11驳回了顾矜应助
13秒前
标致溪流发布了新的文献求助10
14秒前
14秒前
桐桐应助机智斩采纳,获得10
16秒前
18秒前
鱼yu关注了科研通微信公众号
19秒前
Pt-SACs发布了新的文献求助10
19秒前
所所应助静然采纳,获得10
19秒前
zhangy559完成签到 ,获得积分10
20秒前
20秒前
生动的水蜜桃关注了科研通微信公众号
21秒前
李小宁发布了新的文献求助10
21秒前
动听的人英完成签到 ,获得积分10
21秒前
22秒前
州州完成签到,获得积分10
22秒前
24秒前
乐观沛白发布了新的文献求助10
25秒前
25秒前
Pt-SACs完成签到,获得积分10
27秒前
28秒前
28秒前
机智斩发布了新的文献求助10
30秒前
qhy完成签到,获得积分10
31秒前
打打应助x1采纳,获得10
32秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112