Transfer Learning Strategy Based on Unsupervised Learning and Ensemble Learning for Breast Cancer Molecular Subtype Prediction Using Dynamic Contrast‐Enhanced MRI

人工智能 学习迁移 计算机科学 深度学习 集成学习 对比度(视觉) 磁共振成像 机器学习 模式识别(心理学) 接收机工作特性 试验装置 集合预报 动态增强MRI 乳腺癌 癌症 放射科 医学 内科学
作者
Rong Sun,Xuewen Hou,Xiujuan Li,Yuanzhong Xie,Shengdong Nie
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (5): 1518-1534 被引量:18
标识
DOI:10.1002/jmri.27955
摘要

Background Imaging‐driven deep learning strategies focus on training from scratch and transfer learning. However, the performance of training from scratch is often impeded by the lack of large‐scale labeled training data. Additionally, owing to the differences between source and target domains, analyzing medical image tasks satisfactorily via transfer learning based on ImageNet is difficult. Purpose To investigate two transfer learning algorithms for breast cancer molecular subtype prediction (luminal and non‐luminal) based on unsupervised pre‐training and ensemble learning: M_EL and B_EL, using malignant and benign datasets as the source domain, respectively. Study Type Retrospective. Population Eight hundred and thirty‐three female patients with histologically confirmed breast lesions (567 benign and 266 malignant cases) were selected. In the 5‐fold cross‐validation, the malignant cohort was randomly divided into 5 subsets to form a training set (80%) and a validation set (20%). Field Strength/Sequence 3.0 T, dynamic contrast‐enhanced magnetic resonance imaging ( DCE ‐ MRI) using T1 ‐weighted high‐resolution isotropic volume examination. Assessment First, three datasets acquired at different times post‐contrast were preprocessed as unlabeled source domains. Second, three baseline networks corresponding to the different MRI post‐contrast phases were built, optimized by a combination of mutual information maximization between high‐ and low‐level representations and prior distribution constraints. Next, the pre‐trained networks were fine‐tuned on the labeled target domain. Finally, prediction results were integrated using weighted voting‐based ensemble learning. Statistical Tests Mean accuracy, precision, specificity, and area under receiver operating characteristic curve (AUC) were obtained with 5‐fold cross‐validation. P < 0.05 was considered to be statistically significant. Results Compared with a convolutional long short‐term memory network, pre‐trained VGG‐16, VGG‐19, and DenseNet‐121 from ImageNet, M_EL and B_EL exhibited significantly more optimized prediction performance (specificity: 90.5% and 89.9%; accuracy: 82.6% and 81.1%; precision: 91.2% and 90.9%; AUC: 0.836 and 0.823, respectively). Data Conclusion Transfer learning based on unsupervised pre‐training may facilitate automatic prediction of breast cancer molecular subtypes. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
于雷是我完成签到,获得积分10
1秒前
waws完成签到,获得积分10
2秒前
123456789发布了新的文献求助20
3秒前
Owen应助Zone采纳,获得10
4秒前
5秒前
斗罗大陆发布了新的文献求助10
6秒前
云澈发布了新的文献求助10
7秒前
ED应助沉默的阁采纳,获得10
9秒前
怕黑冥王星完成签到,获得积分20
10秒前
kh完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
10秒前
搜集达人应助爱啃大虾采纳,获得10
11秒前
共享精神应助研友_楼灵煌采纳,获得10
13秒前
文武完成签到 ,获得积分0
14秒前
仿真小学生完成签到,获得积分10
16秒前
路遥完成签到,获得积分10
19秒前
爆米花应助noob_采纳,获得10
21秒前
能HJY完成签到,获得积分10
22秒前
刻苦慕晴完成签到 ,获得积分10
23秒前
24秒前
25秒前
Caism发布了新的文献求助10
27秒前
27秒前
苻涵菡完成签到,获得积分10
28秒前
充电宝应助幸福广山采纳,获得10
28秒前
29秒前
29秒前
顾矜应助李颖采纳,获得10
30秒前
腼腆钵钵鸡完成签到,获得积分10
31秒前
爱啃大虾发布了新的文献求助10
31秒前
lwtsy完成签到,获得积分10
31秒前
张继科keke发布了新的文献求助20
35秒前
35秒前
Robin完成签到,获得积分10
38秒前
Akim应助凡仔采纳,获得10
38秒前
lwtsy发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953205
求助须知:如何正确求助?哪些是违规求助? 3498532
关于积分的说明 11092425
捐赠科研通 3229120
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415