电子转移
电子传输链
跨膜蛋白
生物物理学
化学
地杆菌
细胞外
固氮
硫化地杆菌
生物化学
细菌
细胞生物学
生物
氮气
光化学
生物膜
遗传学
受体
有机化学
作者
Fangyuan Dong,Yoo Seok Lee,Erin M. Gaffney,Willisa Liou,Shelley D. Minteer
出处
期刊:ACS Catalysis
日期:2021-10-15
卷期号:11 (21): 13169-13179
被引量:29
标识
DOI:10.1021/acscatal.1c03038
摘要
Increasing attention has been paid to bioelectrochemical nitrogen fixation (e-BNF) as a promising approach to achieve the NH3 synthesis under mild conditions. However, currently developed microbial e-BNF systems all rely on diffusible mediators to deliver redox equivalents inside the bacteria. Challenges of using diffusible mediators include toxicity, inefficient transmembrane diffusion, mediator inactivation, mediator contamination, and low energy efficiency. To date, e-BNF through transmembrane electron uptake without using diffusible electron mediators has not yet been reported. Herein, we describe a genetic strategy to engineer cyanobacterium Synechococcus elongatus PCC 7942 with transmembrane electron transfer (TET) ability to realize e-BNF without the addition of soluble mediators. The engineered S. elongatus PCC 7942 strain Se-nif with N2 fixation activity was further transformed with an outer membrane protein cytochrome S OmcS, which contributes for the extracellular electron transfer (EET) ability of Geobacter sp. The engineered Senifom strain exhibited enhanced TET ability resulting in an approximately 13-fold higher NH3 production rate than the corresponding Se-nif strain. The Faradaic efficiency of the Senifom e-BNF system was calculated to be approximately 23.3%, which is higher than the previously reported e-BNF systems. The electron pathway of the obtained extracellular electron was briefly analyzed and an extracellular electron uptake mechanism in the Senifom strain was proposed. This work demonstrates that a genetically engineered conduit can facilitate transmembrane electronic communication from the electrode to living cells, thereby providing insights into bioelectrosynthesis technology, especially the e-BNF systems and ammonium production.
科研通智能强力驱动
Strongly Powered by AbleSci AI