Continual Learning for Class- and Domain-Incremental Semantic Segmentation

计算机科学 分割 人工智能 机器学习 任务(项目管理) 班级(哲学) 遗忘 领域(数学分析) 对象(语法) 图像分割 模式识别(心理学) 数学分析 管理 经济 哲学 语言学 数学
作者
Tobias Kalb,Masoud Roschani,M. Ruf,Jürgen Beyerer
标识
DOI:10.1109/iv48863.2021.9575493
摘要

The field of continual deep learning is an emerging field and a lot of progress has been made. However, concurrently most of the approaches are only tested on the task of image classification, which is not relevant in the field of intelligent vehicles. Only recently approaches for class-incremental semantic segmentation were proposed. However, all of those approaches are based on some form of knowledge distillation. At the moment there are no investigations on replay-based approaches that are commonly used for object recognition in a continual setting. At the same time while unsupervised domain adaption for semantic segmentation gained a lot of traction, investigations regarding domain-incremental learning in an continual setting is not well-studied. Therefore, the goal of our work is to evaluate and adapt established solutions for continual object recognition to the task of semantic segmentation and to provide baseline methods and evaluation protocols for the task of continual semantic segmentation. We firstly introduce evaluation protocols for the class- and domain-incremental segmentation and analyze selected approaches. We show that the nature of the task of semantic segmentation changes which methods are most effective in mitigating forgetting compared to image classification. Especially, in class-incremental learning knowledge distillation proves to be a vital tool, whereas in domain-incremental learning replay methods are the most effective method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
makabaka发布了新的文献求助200
2秒前
某某某发布了新的文献求助10
2秒前
minr发布了新的文献求助10
2秒前
2秒前
彭于晏应助懵懂小尉采纳,获得10
3秒前
3秒前
5秒前
情木花肆完成签到,获得积分10
6秒前
6秒前
我不爱池鱼应助哈哈采纳,获得10
6秒前
斯文败类应助550采纳,获得10
6秒前
6秒前
千冬发布了新的文献求助10
7秒前
安若好便是晴完成签到,获得积分10
8秒前
Chris完成签到,获得积分10
10秒前
早起完成签到,获得积分10
11秒前
尛瞐慶成发布了新的文献求助10
12秒前
想瘦的海豹完成签到,获得积分20
12秒前
12秒前
DHW发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
任性的不愁应助gan采纳,获得10
14秒前
香蕉觅云应助彩色伯云采纳,获得30
15秒前
chenweijie完成签到,获得积分10
16秒前
16秒前
高高的戎发布了新的文献求助10
17秒前
芷兰丁香发布了新的文献求助50
17秒前
17秒前
小二郎应助dablack采纳,获得10
18秒前
18秒前
科研通AI2S应助saily采纳,获得10
18秒前
18秒前
西蓝花香菜完成签到 ,获得积分10
18秒前
大恒完成签到,获得积分10
19秒前
19秒前
愉快的初曼完成签到,获得积分10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708