Classification of Medicinal Plants Astragalus Mongholicus Bunge and Sophora Flavescens Aiton Using GaoFen-6 and Multitemporal Sentinel-2 Data

苦参 人工智能 计算机科学 数学 生物 苦参碱 神经科学
作者
Congcong Wang,Xiaobo Zhang,Tingting Shi,Chunhong Zhang,Minhui Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5
标识
DOI:10.1109/lgrs.2021.3120125
摘要

Accurate information regarding cultivated areas of medicinal plants is useful for taking macro-level decisions for medicinal plant management and contingency plans. In this study, the capabilities and limitations of mapping Astragalus mongholicus Bunge and Sophora flavescens Aiton using GaoFen-6 (GF-6) and multitemporal Sentinel-2 (S-2) data were assessed through a case study in Naiman Banner, Inner Mongolia, China. First, an object-based approach was used to produce a cropland mask based on the GF-6 images. Then, different spectral indices were generated from multitemporal S-2 imagery acquired in 2019, and a temporal phonological pattern analysis was conducted. Subsequently, optimal feature selection was carried out for each of the crops ( A. mongholicus Bunge, S. flavescens Aiton, and Zea mays L.). The selection was performed by sorting all features according to their global separability index and removing those whose contribution to the model accuracy was negligible. Finally, the medicinal crops were distinguished using the random forest classification algorithm. An overall accuracy and a kappa coefficient of 94.51% and 0.90 were achieved, respectively, demonstrating that the synergistic use of time-series GF-6 and S-2 data were more suitable for A. mongholicus Bunge and S. flavescens Aiton mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gege完成签到,获得积分10
1秒前
1秒前
结实的忆枫完成签到,获得积分10
2秒前
2秒前
科目三应助aff采纳,获得10
2秒前
科研菜鸟完成签到,获得积分10
2秒前
Lucas应助冷艳笑卉采纳,获得10
3秒前
amoresk发布了新的文献求助10
3秒前
monere发布了新的文献求助10
4秒前
4秒前
王欣瑶完成签到 ,获得积分10
4秒前
5秒前
dahuihui完成签到,获得积分20
5秒前
荣荣发布了新的文献求助10
5秒前
隐形荟发布了新的文献求助30
6秒前
所所应助zryyy采纳,获得10
6秒前
7秒前
Larvenpiz完成签到,获得积分10
7秒前
研友_Z7Xvl8完成签到,获得积分10
7秒前
8秒前
英俊的铭应助喜悦飞鸟采纳,获得10
8秒前
王自信完成签到,获得积分10
8秒前
Shirley完成签到 ,获得积分10
8秒前
英姑应助夏雪冬花采纳,获得10
9秒前
啥也做不出来的小谭完成签到,获得积分10
9秒前
11秒前
小爱同学发布了新的文献求助10
11秒前
xzn1123给Yanfei的求助进行了留言
11秒前
12秒前
13秒前
呵呵哒完成签到,获得积分10
13秒前
13秒前
悲惨雪糕W发布了新的文献求助10
14秒前
机智的雨寒完成签到,获得积分10
14秒前
14秒前
城南烤地瓜完成签到 ,获得积分10
15秒前
满意的迎南完成签到 ,获得积分10
15秒前
上官若男应助无情的白桃采纳,获得10
15秒前
15秒前
高分求助中
All the Birds of the World 2000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3717604
求助须知:如何正确求助?哪些是违规求助? 3264257
关于积分的说明 9933674
捐赠科研通 2978190
什么是DOI,文献DOI怎么找? 1633189
邀请新用户注册赠送积分活动 775024
科研通“疑难数据库(出版商)”最低求助积分说明 745317