Digital Diagnosis of Hand, Foot, and Mouth Disease Using Hybrid Deep Neural Networks

深度学习 人工智能 卷积神经网络 无菌性脑膜炎 疾病 计算机科学 自编码 机器学习 上下文图像分类 多层感知器 人工神经网络 模式识别(心理学) 医学 病理 儿科 图像(数学) 脑膜炎
作者
Suraj Verma,Mohammad A. Razzaque,Usanut Sangtongdee,Chonlameth Arpnikanondt,Boonrat Tassaneetrithep,Alamgir Hossain
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 143481-143494 被引量:12
标识
DOI:10.1109/access.2021.3120199
摘要

Hand, Foot and Mouth Disease (HFMD) is a highly contagious paediatric disease showing up symptoms like fever, diarrhoea, oral ulcers and rashes on the hands and foot, and even in the mouth. This disease has become an epidemic with several outbreaks in many Asian-Pacific countries with the basic reproduction number R0 > 1. HFMD's diagnosis is very challenging as its lesion pattern may appear quite similar to other skin diseases such as herpangina, aseptic meningitis, and poliomyelitis. Therefore, clinical symptoms are essential besides skin lesion's pattern and position for precise diagnose of this disease. A deep learning-based HFMD detection system can play a significant role in the digital diagnosis of this disease. Various machine learning and deep learning architectures have been proposed for skin disease diagnosis and classification. However, these models are limited to the image classification problem. The diagnosis of similar appearing skin diseases using the image classification approach may result in misclassification or misdiagnosis of the disease. Parallel integration of clinical symptoms and images can improve disease diagnosis and classification performance. However, no deep learning architecture has been developed to diagnose HFMD disease from images and clinical data. This paper has proposed a novel Hybrid Deep Neural Networks integrating Multi-Layer Perceptron (MLP) network and Convolutional Neural Network into a single framework for the diagnosis of HFMD using the integrated features from clinical and image data. The proposed Hybrid Deep Neural Networks is particularly a multi branched model comprising of Multi-Layer Perceptron (MLP) network in the first branch to extract the clinical features and the modified pre-trained CNN architecture: MobileNet or NasNetMobile in the second branch to extract the features from skin disease lesion images. The features learnt from both the branches are merged to form an integrated feature from clinical data and images, which is fed to the subsequent classification network. We conducted several experiments employing image data only, clinical data only and both sources of data. The analyses compared and evaluated the performance of a typical MLP model and CNN model with our proposed Hybrid Deep Neural Networks. The novel approach promotes the existing image classification model and clinical symptoms based disease classification model, particularly the MLP model. From the cross-validated experiments, the results reveal that the proposed Hybrid Deep Neural Networks can diagnose the disease 99%-100% accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芳芳完成签到 ,获得积分10
6秒前
研友_LMBAXn完成签到,获得积分20
7秒前
如意2023完成签到 ,获得积分10
8秒前
伯爵完成签到 ,获得积分10
8秒前
化学小学生完成签到,获得积分10
12秒前
mads完成签到 ,获得积分10
13秒前
满意代亦完成签到 ,获得积分10
15秒前
18秒前
科研怪人完成签到 ,获得积分10
18秒前
Zhangll完成签到 ,获得积分10
23秒前
wqc2060完成签到,获得积分10
23秒前
YEFEIeee完成签到 ,获得积分10
25秒前
Leah发布了新的文献求助10
25秒前
fiu~完成签到 ,获得积分10
27秒前
i2stay完成签到,获得积分10
30秒前
加油完成签到 ,获得积分10
35秒前
优秀的dd完成签到 ,获得积分10
36秒前
Liberal-5完成签到 ,获得积分10
38秒前
我就想看看文献完成签到 ,获得积分10
41秒前
Nicole完成签到 ,获得积分10
41秒前
mojomars完成签到,获得积分10
42秒前
qqq完成签到 ,获得积分10
43秒前
大脸猫完成签到 ,获得积分10
43秒前
空洛完成签到 ,获得积分10
52秒前
柳冰清完成签到 ,获得积分10
57秒前
Neo完成签到,获得积分10
1分钟前
aaliyah完成签到 ,获得积分10
1分钟前
水文小白完成签到,获得积分10
1分钟前
梧桐完成签到 ,获得积分10
1分钟前
2012csc完成签到 ,获得积分0
1分钟前
天才小能喵完成签到 ,获得积分0
1分钟前
执着易形完成签到 ,获得积分10
1分钟前
辜月十二完成签到 ,获得积分10
1分钟前
瘦瘦的铅笔完成签到 ,获得积分10
1分钟前
orchid完成签到,获得积分10
1分钟前
毛豆爸爸应助科研通管家采纳,获得20
1分钟前
毛豆爸爸应助科研通管家采纳,获得20
1分钟前
在水一方应助雪巧采纳,获得10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
congcong完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126186
求助须知:如何正确求助?哪些是违规求助? 2776364
关于积分的说明 7729927
捐赠科研通 2431820
什么是DOI,文献DOI怎么找? 1292299
科研通“疑难数据库(出版商)”最低求助积分说明 622696
版权声明 600430