Urine Biomarkers for the Diagnosis of Bladder Cancer: a Network Meta-Analysis.

医学 荟萃分析 膀胱癌 内科学 尿 置信区间 科克伦图书馆 肿瘤科 诊断优势比 优势比 癌症 胃肠病学 泌尿科
作者
Ying Dong,Ting Zhang,Xining Li,Feng Yu,Hao Yu,Shenwen Shao
出处
期刊:PubMed 卷期号:18 (6): 623-632 被引量:3
标识
DOI:10.22037/uj.v18i.6254
摘要

To identify effective urine biomarkers for bladder cancer diagnosis.This meta-analysis was conducted following the guidelines of the Meta-Analyses (PRISMA) statement. Relevant studies were searched from the PubMed, Embase, and Cochrane Library databases. Heterogeneity tests were performed using Q statistics and I2 tests to determine the use of the random or fixed effects model. A direct comparison meta-analysis and network meta-analysis were conducted. The effect values are presented as odds ratios and 95% confidence intervals. Sensitivity analysis and consistency tests were performed.Fifty-eight studies with 12,038 participants were included. Direct comparison meta-analysis showed statistically significant differences in bladder cancer antigen (BTA) trak vs. nuclear matrix protein 22 (NMP22), BTA stat vs. urine cytology (UC), and fluorescence in situ hybridization (FISH) vs. UC, among the sensitivity indicators. Among the specificity indicators, there were statistically significant differences in BTA trak vs. UC, ImmunoCyt (immunocyte) vs. NMP22, and BTA stat vs. FISH. Among the positive predictive indicators, NMP22 vs. UC, BTA stat vs. UC, and FISH vs. NMP22 showed statistically significant differences. Among the negative predictive indicators, the differences in FISH vs. UC, FISH vs. NMP22, and hyaluronidase 1 (HYAL-1) vs. UC were statistically significant. Among the accuracy indicators, FISH vs. NMP22, FISH vs. UC, and HYAL-1 vs. UC showed statistically significant differences. Network meta-analysis showed that HYAL-1, urothelial carcinoma associated 1 (UCA1) and survivin had the highest sensitivity, while UC had the lowest sensitivity. The specificity of UC, FISH, and HYAL-1 was the highest, while that of UCA1 was the lowest. In terms of positive predictive indicators, UC, FISH, and HYAL-1 had the highest positive predictive value, while the BTA group had the lowest positive predictive value. In terms of negative predictive indicators, HYAL-1, UCA1, and survivin had the highest negative predictive value, while UC had the lowest negative predictive value. In terms of accuracy indicators, HYAL-1, UCA1, and survivin had the highest accuracy, while UC had the lowest accuracy.HYAL-1 and survivin are suitable urine biomarkers for bladder cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
alexyusheng完成签到,获得积分10
2秒前
CipherSage应助jhj采纳,获得10
2秒前
3秒前
贾明灵发布了新的文献求助10
3秒前
朝朝完成签到,获得积分10
3秒前
3秒前
左安彤完成签到,获得积分10
4秒前
打打应助威武的泽洋采纳,获得30
4秒前
Markus发布了新的文献求助30
7秒前
初雪完成签到,获得积分10
7秒前
汉堡包应助蓝色天空采纳,获得10
7秒前
科研通AI6应助sure采纳,获得10
8秒前
ZeKaWa应助tp040900采纳,获得20
8秒前
天天快乐应助无端采纳,获得10
9秒前
张小北完成签到,获得积分10
9秒前
lj发布了新的文献求助10
10秒前
10秒前
英姑应助jitanxiang采纳,获得10
11秒前
萧湘完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
朱厚璁发布了新的文献求助10
15秒前
zhulinling完成签到,获得积分10
15秒前
科研通AI2S应助zqm采纳,获得10
15秒前
15秒前
啊哈完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助150
19秒前
YElv完成签到,获得积分10
21秒前
jiay发布了新的文献求助30
22秒前
上官若男应助艾克j采纳,获得10
23秒前
QWE发布了新的文献求助10
23秒前
善学以致用应助朱厚璁采纳,获得10
23秒前
无端发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868