重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Urine Biomarkers for the Diagnosis of Bladder Cancer: a Network Meta-Analysis.

医学 荟萃分析 膀胱癌 内科学 尿 置信区间 科克伦图书馆 肿瘤科 诊断优势比 优势比 癌症 胃肠病学 泌尿科
作者
Ying Dong,Ting Zhang,Xining Li,Feng Yu,Hao Yu,Shenwen Shao
出处
期刊:PubMed 卷期号:18 (6): 623-632 被引量:3
标识
DOI:10.22037/uj.v18i.6254
摘要

To identify effective urine biomarkers for bladder cancer diagnosis.This meta-analysis was conducted following the guidelines of the Meta-Analyses (PRISMA) statement. Relevant studies were searched from the PubMed, Embase, and Cochrane Library databases. Heterogeneity tests were performed using Q statistics and I2 tests to determine the use of the random or fixed effects model. A direct comparison meta-analysis and network meta-analysis were conducted. The effect values are presented as odds ratios and 95% confidence intervals. Sensitivity analysis and consistency tests were performed.Fifty-eight studies with 12,038 participants were included. Direct comparison meta-analysis showed statistically significant differences in bladder cancer antigen (BTA) trak vs. nuclear matrix protein 22 (NMP22), BTA stat vs. urine cytology (UC), and fluorescence in situ hybridization (FISH) vs. UC, among the sensitivity indicators. Among the specificity indicators, there were statistically significant differences in BTA trak vs. UC, ImmunoCyt (immunocyte) vs. NMP22, and BTA stat vs. FISH. Among the positive predictive indicators, NMP22 vs. UC, BTA stat vs. UC, and FISH vs. NMP22 showed statistically significant differences. Among the negative predictive indicators, the differences in FISH vs. UC, FISH vs. NMP22, and hyaluronidase 1 (HYAL-1) vs. UC were statistically significant. Among the accuracy indicators, FISH vs. NMP22, FISH vs. UC, and HYAL-1 vs. UC showed statistically significant differences. Network meta-analysis showed that HYAL-1, urothelial carcinoma associated 1 (UCA1) and survivin had the highest sensitivity, while UC had the lowest sensitivity. The specificity of UC, FISH, and HYAL-1 was the highest, while that of UCA1 was the lowest. In terms of positive predictive indicators, UC, FISH, and HYAL-1 had the highest positive predictive value, while the BTA group had the lowest positive predictive value. In terms of negative predictive indicators, HYAL-1, UCA1, and survivin had the highest negative predictive value, while UC had the lowest negative predictive value. In terms of accuracy indicators, HYAL-1, UCA1, and survivin had the highest accuracy, while UC had the lowest accuracy.HYAL-1 and survivin are suitable urine biomarkers for bladder cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上如松完成签到 ,获得积分10
1秒前
浮游应助顺其自然_666888采纳,获得10
1秒前
未若从前i完成签到,获得积分10
3秒前
闪闪凡霜完成签到,获得积分10
3秒前
YINLI完成签到,获得积分20
3秒前
Alex发布了新的文献求助10
4秒前
5秒前
进击的大叔完成签到,获得积分10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
renshiq完成签到,获得积分10
7秒前
7秒前
小宇子发布了新的文献求助10
8秒前
大卷完成签到,获得积分10
8秒前
wanci应助柳橙采纳,获得10
8秒前
阿艺完成签到,获得积分10
9秒前
浮游应助sk采纳,获得10
10秒前
CHENHAHA完成签到,获得积分10
10秒前
10秒前
昨夜書完成签到 ,获得积分10
10秒前
cui发布了新的文献求助10
11秒前
小蘑菇应助ssn采纳,获得10
11秒前
宋虹发布了新的文献求助10
11秒前
luluturn发布了新的文献求助30
11秒前
充电宝应助tjxz2002采纳,获得10
11秒前
12秒前
右右发布了新的文献求助10
12秒前
rr完成签到 ,获得积分10
13秒前
13秒前
丘比特应助123采纳,获得10
14秒前
15秒前
王yz发布了新的文献求助10
16秒前
bobqwera发布了新的文献求助10
16秒前
16秒前
王瑶完成签到,获得积分20
17秒前
小药丸完成签到 ,获得积分10
17秒前
李华完成签到,获得积分10
17秒前
lyric发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699