A Graph-Based Approach for Missing Sensor Data Imputation

无线传感器网络 计算机科学 数据挖掘 图形 数据建模 实时计算 理论计算机科学 计算机网络 数据库
作者
Jiang Xiao,Zean Tian,Kenli Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (20): 23133-23144 被引量:14
标识
DOI:10.1109/jsen.2021.3106656
摘要

The Internet of Things (IoT) oriented intelligent services require high-quality sensor data delivery in the wireless sensor networks (WSNs). However, either due to the sensor malfunctions and commutation errors or simply due to the expensive overhead for making full data forwarding, data corruption and loss is relatively common in WSNs, which adversely affects the data quality and the further decisions taking from data. Motivated by the emerging field of graph signal processing (GSP), we propose to impute the missing values in wireless sensor networks based on the topological information carried in the product graph. The proposed solution captures the joint time-space dependencies among the sensor data through a spatiotemporal (ST) graph, which is a time-vertex graph constructed by taking a strong product of a temporal graph and a spatial sensor network graph. Then, the sensory data are mapped onto the vertices of the ST graph and the spatial-temporal nature of sensor data can be further characterized by the notion of smoothness used in GSP. Moreover, instead of imputing with a given spatial graph, we propose a graph learning-based imputation framework to infer underlying space dependencies between the sensors and thus enhance the data imputation performances. Finally, we validate the proposed recovery method using real-world sensor network datasets. The results demonstrate the superior performance of our proposed graph-based method in sensor data imputation, especially when massive sensor data are lost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qqqqqqy应助冰魄落叶采纳,获得10
刚刚
石头发布了新的文献求助10
刚刚
1秒前
oldlee发布了新的文献求助20
1秒前
ZhiningZ完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
棋士发布了新的文献求助30
3秒前
章威发布了新的文献求助10
4秒前
孤独梦安发布了新的文献求助10
5秒前
asparagine完成签到,获得积分10
5秒前
xueshudog完成签到,获得积分10
5秒前
5秒前
刺猬发布了新的文献求助10
6秒前
归尘应助雪山飞龙采纳,获得10
6秒前
MH159发布了新的文献求助10
6秒前
眼睛大乐松完成签到,获得积分10
6秒前
zhouleibio完成签到,获得积分10
6秒前
Epiphany完成签到,获得积分10
7秒前
7秒前
慕青应助纯真如松采纳,获得10
7秒前
陈兮兮发布了新的文献求助10
7秒前
火山蜗牛完成签到,获得积分10
8秒前
Jorna完成签到,获得积分10
8秒前
种田完成签到,获得积分10
9秒前
华某完成签到,获得积分10
9秒前
Jasper应助小包包采纳,获得10
10秒前
Maestro_S完成签到,获得积分0
10秒前
传奇3应助万有引力采纳,获得10
10秒前
周舟发布了新的文献求助20
11秒前
wille完成签到,获得积分10
11秒前
情怀应助齐鸿轩采纳,获得10
11秒前
12秒前
热心市民小红花应助章威采纳,获得10
12秒前
飞燕草完成签到,获得积分10
12秒前
独特的秋完成签到,获得积分10
14秒前
芳芳子呀完成签到,获得积分10
14秒前
感动城完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124