Data augmentation and its application in distributed acoustic sensing data denoising

过度拟合 计算机科学 降噪 数据集 噪音(视频) 卷积神经网络 人工智能 一般化 集合(抽象数据类型) 合成数据 人工神经网络 深度学习 机器学习 模式识别(心理学) 数据挖掘 数学 数学分析 图像(数学) 程序设计语言
作者
Yuxing Zhao,Y. Li,Ning Wu
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:228 (1): 119-133 被引量:6
标识
DOI:10.1093/gji/ggab345
摘要

SUMMARY As a data-driven approach, the performance of deep learning models depends largely on the quantity and quality of the training data sets, which greatly limits the application of deep learning to tasks with small data sets. Unfortunately, sometimes we need to use limited small data sets to complete our tasks, such as distributed acoustic sensing (DAS) data denoising. However, using a small data set to train the network may cause overfitting, resulting in poor network generalization. To solve this problem, we propose an approach based on the combination of a generative adversarial network and a deep convolutional neural network. First, we used a small noise data set to train a generative adversarial network to generate synthetic noise samples, and then used these synthetic noise samples to augment the noise data set. Next, we used the augmented noise data set and the signal data set obtained through forward modelling to construct a synthetic training set. Finally, a denoising network based on a convolutional neural network was trained on the constructed synthetic training set. Experimental results show that the augmented data set can effectively improve the denoising performance and generalization ability of the network, and the denoising network trained on the augmented data set can more effectively reduce various kinds of noise in the DAS data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助555采纳,获得10
刚刚
1秒前
陈影完成签到,获得积分10
1秒前
满意白开水完成签到,获得积分10
2秒前
科研通AI6应助缥缈的水彤采纳,获得10
2秒前
redflower发布了新的文献求助10
2秒前
JamesPei应助王与可采纳,获得10
3秒前
科研通AI6应助壮观的可以采纳,获得10
3秒前
Li完成签到,获得积分20
3秒前
李健应助cjw采纳,获得10
4秒前
4秒前
xiaominza发布了新的文献求助30
4秒前
万能图书馆应助西瓜妹采纳,获得10
4秒前
粗暴的达发布了新的文献求助10
4秒前
科研通AI6应助风中泰坦采纳,获得10
5秒前
5秒前
彭于晏应助长风采纳,获得10
5秒前
依克完成签到,获得积分10
5秒前
5秒前
5秒前
cccat发布了新的文献求助50
6秒前
格林维度关注了科研通微信公众号
6秒前
领导范儿应助忘的澜采纳,获得10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得60
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
挽歌发布了新的文献求助20
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
ytzhang0587应助科研通管家采纳,获得20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905