A novel flower-like architecture comprised of 3D interconnected Co–Al-Ox/Sy decorated lignosulfonate-derived carbon nanosheets for flexible supercapacitors and electrocatalytic water splitting

材料科学 超级电容器 双功能 分解水 煅烧 化学工程 混合材料 电化学 层状双氢氧化物 析氧 碳纤维 纳米技术 电极 催化作用 复合数 化学 光催化 有机化学 复合材料 工程类 物理化学
作者
Can Jiang,Manzhao Yao,Zuhao Wang,Jiaxiong Li,Zhijian Sun,Liang Li,Kyoung‐sik Moon,Ching‐Ping Wong
出处
期刊:Carbon [Elsevier]
卷期号:184: 386-399 被引量:29
标识
DOI:10.1016/j.carbon.2021.08.044
摘要

It is a great challenge to construct low-cost nanostructured carbon as supports of transition metal oxides/chalcogenides for electrochemical energy storage and conversion applications. Herein, a facile and sustainable strategy is demonstrated that biomass-derived lignosulfonate (LS) as carbon precursors is first co-precipitated with metal salt precursors to form LS-conformal Co–Al layered double hydroxides (Co–Al LDHs) flower-like architectures. After calcination, the pyrolyzates of Co–Al LDHs (Co–Al-Ox) and the corresponding vulcanized products cobalt chalcogenides (Co3S4) are in-situ co-doped into LS-derived carbon nanosheets (LSCN), forming novel flower-like Co–Al-Ox/Sy@LSCN hybrid materials. Owing to the structural and compositional benefits, the resulting hybrid materials and LSCN as electrode materials endowed flexible all-LS based asymmetric supercapacitor high energy density (21.83 Wh Kg−1@374.28 W kg−1). Due to the in-situ multi-component doping and heterojunctions, the hybrid materials could serve as efficient bifunctional electrocatalysts for oxygen evolution reaction (264 [email protected] mA cm−2) and hydrogen evolution reaction (291 [email protected] mA cm−2) and exhibited remarkable stability for overall water splitting (over 100 h). This study not only demonstrates a feasible route to explore low-cost and renewable bio-based electroactive materials for future wearable energy electronics and large-scale hydrogen production, but also proposes a grand opportunity for the valorization of waste LS to high-valued multifunctional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
复杂函完成签到,获得积分10
刚刚
snow_dragon完成签到 ,获得积分10
1秒前
幽幽完成签到,获得积分20
2秒前
慕雨倾欣完成签到,获得积分10
2秒前
款冬发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
杨Yang完成签到 ,获得积分10
4秒前
4秒前
4秒前
DR_Su完成签到,获得积分10
5秒前
li发布了新的文献求助10
5秒前
冠希发布了新的文献求助10
5秒前
6秒前
6秒前
HM发布了新的文献求助10
6秒前
科研通AI5应助瑞秋采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
abc97完成签到,获得积分10
8秒前
Proddy发布了新的文献求助10
8秒前
DR_Su发布了新的文献求助10
9秒前
9秒前
10秒前
chen完成签到 ,获得积分10
10秒前
111发布了新的文献求助10
10秒前
晨露发布了新的文献求助10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
幽幽发布了新的文献求助10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
11秒前
yuxiaobolab发布了新的文献求助10
11秒前
jwx应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153