A combination of P300 and eye movement data improves the accuracy of auxiliary diagnoses of depression

帕罗西汀 哈姆德 萧条(经济学) 心理学 人工智能 精神科 评定量表 计算机科学 发展心理学 抗抑郁药 宏观经济学 经济 焦虑
作者
Yunheng Diao,Mengjun Geng,Yifang Fu,Huiying Wang,Cong Liu,Jingyang Gu,Jiao Dong,Junlin Mu,Xianhua Liu,Changhong Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:297: 386-395 被引量:7
标识
DOI:10.1016/j.jad.2021.10.028
摘要

Exploratory eye movements (EEMs) and P300 are often used to facilitate the clinical diagnosis of depression. However, There were few studies using the combination of EEMs and P300 to build a model for detecting depression and predicting a curative effect. Sixty patients were recruited for 2 groups: high frequency repetitive transcranial magnetic stimulation(rTMS) combined with paroxetine group and simple paroxetine group. Clinical efficacy was evaluated by the Hamilton Depression scale-24(HAMD-24), EEMs and P300. The classification model of the auxiliary diagnosis of depression and the prediction model of the two treatments were developed based on a machine learning algorithm. The classification model with the greatest accuracy for patients with depression and healthy controls was 95.24% (AUC = 0.75, recall = 1.00, precision = 0.95, F1-score = 0.97). The root mean square error (RMSE) of the model for predicting the efficacy of high frequency rTMS combined with paroxetine was 3.54 (MAE [mean absolute error] = 2.56, R2 = -0.53). The RMSE of the model for predicting the efficacy of paroxetine was 4.97 (MAE = 4.00, R2 = -0.91). Based on the machine learning algorithm, P300 and EEMs data was suitable for modeling to distinguish depression patients and healthy individuals. However, it was not suitable for predicting the efficacy of high frequency rTMS combined with paroxetine or to predict the efficacy of paroxetine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的凝雁完成签到,获得积分10
刚刚
科研通AI5应助赖道之采纳,获得10
刚刚
Menand完成签到,获得积分10
1秒前
学者发布了新的文献求助10
1秒前
清新完成签到,获得积分10
1秒前
陶弈衡完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
愉快盼曼发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
nemo发布了新的文献求助10
7秒前
学术蝗虫完成签到,获得积分10
7秒前
justin完成签到,获得积分10
8秒前
西瓜啵啵完成签到,获得积分10
10秒前
小周完成签到,获得积分10
10秒前
Louki完成签到 ,获得积分10
10秒前
温暖的颜演完成签到 ,获得积分10
11秒前
yudandan@CJLU发布了新的文献求助10
12秒前
科研小民工应助_呱_采纳,获得50
12秒前
愉快盼曼完成签到,获得积分20
12秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
13679165979发布了新的文献求助10
14秒前
温暖的钻石完成签到,获得积分10
14秒前
科研通AI5应助赖道之采纳,获得10
14秒前
15秒前
苏卿应助Eric采纳,获得10
15秒前
思源应助hhzz采纳,获得10
16秒前
红红完成签到,获得积分10
19秒前
瑶一瑶发布了新的文献求助10
19秒前
NexusExplorer应助刘鹏宇采纳,获得10
19秒前
roselau完成签到,获得积分10
19秒前
yudandan@CJLU完成签到,获得积分10
20秒前
20秒前
半山完成签到,获得积分10
24秒前
吹泡泡的红豆完成签到 ,获得积分10
25秒前
研友_89eBO8完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808