A combination of P300 and eye movement data improves the accuracy of auxiliary diagnoses of depression

帕罗西汀 哈姆德 萧条(经济学) 心理学 人工智能 精神科 评定量表 计算机科学 发展心理学 抗抑郁药 宏观经济学 经济 焦虑
作者
Yunheng Diao,Mengjun Geng,Yifang Fu,Huiying Wang,Cong Liu,Jingyang Gu,Jiao Dong,Junlin Mu,Xianhua Liu,Changhong Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:297: 386-395 被引量:7
标识
DOI:10.1016/j.jad.2021.10.028
摘要

Exploratory eye movements (EEMs) and P300 are often used to facilitate the clinical diagnosis of depression. However, There were few studies using the combination of EEMs and P300 to build a model for detecting depression and predicting a curative effect. Sixty patients were recruited for 2 groups: high frequency repetitive transcranial magnetic stimulation(rTMS) combined with paroxetine group and simple paroxetine group. Clinical efficacy was evaluated by the Hamilton Depression scale-24(HAMD-24), EEMs and P300. The classification model of the auxiliary diagnosis of depression and the prediction model of the two treatments were developed based on a machine learning algorithm. The classification model with the greatest accuracy for patients with depression and healthy controls was 95.24% (AUC = 0.75, recall = 1.00, precision = 0.95, F1-score = 0.97). The root mean square error (RMSE) of the model for predicting the efficacy of high frequency rTMS combined with paroxetine was 3.54 (MAE [mean absolute error] = 2.56, R2 = -0.53). The RMSE of the model for predicting the efficacy of paroxetine was 4.97 (MAE = 4.00, R2 = -0.91). Based on the machine learning algorithm, P300 and EEMs data was suitable for modeling to distinguish depression patients and healthy individuals. However, it was not suitable for predicting the efficacy of high frequency rTMS combined with paroxetine or to predict the efficacy of paroxetine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辰星发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
大力尔云完成签到 ,获得积分10
4秒前
6秒前
111发布了新的文献求助10
6秒前
Amb1tionG完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助Jalynn2044采纳,获得10
7秒前
Ahha完成签到 ,获得积分10
8秒前
133完成签到,获得积分10
9秒前
ocean发布了新的文献求助10
9秒前
9秒前
xiaofei发布了新的文献求助10
10秒前
cy发布了新的文献求助10
11秒前
11秒前
季宇发布了新的文献求助10
13秒前
13秒前
13秒前
orixero应助133采纳,获得10
14秒前
15秒前
bkagyin应助njh采纳,获得10
15秒前
勤恳的灵雁完成签到 ,获得积分10
16秒前
神勇的长颈鹿完成签到 ,获得积分10
16秒前
所所应助坦率含双采纳,获得10
17秒前
17秒前
zhukeqinag发布了新的文献求助10
17秒前
wakaka完成签到,获得积分10
18秒前
地山发布了新的文献求助30
19秒前
IAMXC发布了新的文献求助10
19秒前
19秒前
超级惜芹发布了新的文献求助10
20秒前
牡丹花下发布了新的文献求助10
20秒前
8R60d8应助Jalynn2044采纳,获得10
20秒前
guilin应助欣喜的灵阳采纳,获得10
21秒前
咸鱼完成签到,获得积分10
23秒前
稳重的若雁应助季宇采纳,获得10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291