Assessing an on-site customer profiling and hyper-personalization system prototype based on a deep learning approach

仿形(计算机编程) 个性化 计算机科学 市场细分 采购 营销 客户参与度 客户情报 产品(数学) 客户对客户 新产品开发 数据科学 客户保留 万维网 业务 服务质量 社会化媒体 几何学 操作系统 数学 服务(商务)
作者
Adrian Micu,Alexandru Căpățînă,Dragos Cristea,Dan Munteanu,Angela‐Eliza Micu,Daniela Şarpe
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:174: 121289-121289 被引量:19
标识
DOI:10.1016/j.techfore.2021.121289
摘要

The development of artificial intelligence (AI) technologies is proceeding fast across many fields. Based on a deep learning approach, we propose a prototype of an on-site customer profiling and hyper-personalization system (OSCPHPS) targeted at marketing professionals. We propose an AI platform to create customer profiles during their physical presence in stores. The idea of the OSCPHPS prototype is to automatically detect and gather customer data directly from the store, essentially completing customer profiles containing gender, age, personality, emotions, and products they interacted with or bought, irrespective of where they are in the store. Each buying operation could generate an anonymous customer profile. Therefore, for every product sold, the system will track multiple customer-generated profiles of the people who bought that product. These kinds of data offer endless further possibilities for the business. Through a configurational study conducted via fsQCA methodology, we assessed the interest in the OSCPHPS prototype on the part of marketing managers of clothes & fashion stores located in different European countries. Based on these live generated profiles, we could further enhance the OSCPHPS system by adding support for customer segmentation, strategic product campaigns, live product recommendation, analysis of emotions toward a product or a category of products, sales forecasts, and personalized store space enhancements based on augmented reality, customer exploratory statistics and customer purchasing patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaogm发布了新的文献求助10
2秒前
YUN发布了新的文献求助10
4秒前
5秒前
5秒前
xkh发布了新的文献求助10
5秒前
CipherSage应助文静小熊猫采纳,获得10
6秒前
8秒前
感性的又槐完成签到,获得积分10
8秒前
微笑完成签到,获得积分10
8秒前
10秒前
zrw完成签到,获得积分10
11秒前
钟志成完成签到,获得积分20
13秒前
hushan53发布了新的文献求助10
14秒前
tylerconan完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
小橘发布了新的文献求助10
16秒前
贲孱发布了新的文献求助10
17秒前
17秒前
Zzz完成签到 ,获得积分10
17秒前
18秒前
18秒前
壮观静柏发布了新的文献求助10
19秒前
仰山雪完成签到 ,获得积分10
20秒前
Dear发布了新的文献求助10
20秒前
张章发布了新的文献求助10
21秒前
vanshaw.vs发布了新的文献求助10
21秒前
蔡蔡不菜菜完成签到,获得积分10
22秒前
卡布完成签到,获得积分10
22秒前
23秒前
Hiller发布了新的文献求助10
24秒前
25秒前
希望天下0贩的0应助刘云采纳,获得10
27秒前
weijian完成签到,获得积分10
27秒前
张章完成签到,获得积分20
28秒前
思源应助黄雪峰采纳,获得10
28秒前
星辰大海应助XIXI采纳,获得10
29秒前
Hello应助vanshaw.vs采纳,获得10
30秒前
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388