Magnetically propelled soft microrobot navigating through constricted microchannels

纳米技术 材料科学 机械工程 机械 物理 工程类
作者
Jinrun Liu,Shimin Yu,Borui Xu,Ziao Tian,Hehua Zhang,Kaipeng Liu,Xiaojie Shi,Zhe Zhao,Chang Liu,Xinyi Lin,Gaoshan Huang,Alexander A. Solovev,Jizhai Cui,Tianlong Li,Yongfeng Mei
出处
期刊:Applied Materials Today [Elsevier]
卷期号:25: 101237-101237 被引量:24
标识
DOI:10.1016/j.apmt.2021.101237
摘要

• Soft helical microrobots were fabricated using a microfluidic strategy. • Mechanical property can be tuned by adjusting material composition and post ion solution treatment. • The soft microrobot can actively pass through narrow and sinuous microchannels by adaptive deformation. • The soft microrobot exhibits unique tightening when swimming in viscous liquids. Recent strides in microfabrication technologies offer important possibilities for developing microscale robotic systems with enhanced power, functionality and versatility. Previous microrobots fabricated by lithographic techniques usually lack the ability to adaptively deform in confined and constricted spaces and navigate through, therefore hindering their applications in complex biological environments. Here, a microfluidic strategy is combined with a dip-coating process for continuous fabrication of soft helical structures with controllable mechanical property as magnetically propelled microrobots, capable of actively propelling through narrow and sinuous microchannels. Because of their self-adaptive deformation capability, the magnetically propelled soft microrobots can actively navigate through a narrow opening, 2.21 times smaller than the sectional area of the microrobot, and a U-shape-bent capillary, directed by a programmed magnetic field. Additionally, the soft microrobot demonstrates increased swimming speed in a fluid of high viscosity, because of the adaptive tightening deformation of the helix when swimming. This new magnetically propelled soft microrobot and its attractive performance will open up new possibilities for biomedical operation at the micro and nanoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周同学完成签到,获得积分10
刚刚
Cc关闭了Cc文献求助
1秒前
1秒前
懵懂的紫萍完成签到 ,获得积分10
2秒前
研友_ZAxX6n完成签到,获得积分10
2秒前
密密麻麻M完成签到,获得积分10
3秒前
3秒前
包凡之发布了新的文献求助10
3秒前
万能图书馆应助LL采纳,获得10
3秒前
xin完成签到,获得积分10
6秒前
南宫秃完成签到,获得积分10
8秒前
8秒前
帅气书白发布了新的文献求助10
9秒前
swordshine完成签到,获得积分10
9秒前
9秒前
HA完成签到,获得积分20
10秒前
11秒前
12秒前
cinyadane完成签到 ,获得积分10
12秒前
玉玉完成签到 ,获得积分20
13秒前
苏满天发布了新的文献求助10
14秒前
弥淮发布了新的文献求助10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
xiaofei666应助科研通管家采纳,获得20
15秒前
Owen应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
15秒前
科研通AI2S应助bianting采纳,获得10
17秒前
17秒前
好困应助可靠代丝采纳,获得10
18秒前
smile完成签到,获得积分10
19秒前
20秒前
田様应助QXS采纳,获得10
20秒前
LL发布了新的文献求助10
22秒前
所所应助憨憨采纳,获得10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112