Magnetically propelled soft microrobot navigating through constricted microchannels

纳米技术 材料科学 机械工程 机械 物理 工程类
作者
Jinrun Liu,Shimin Yu,Borui Xu,Ziao Tian,Hehua Zhang,Kaipeng Liu,Xiaojie Shi,Zhe Zhao,Chang Liu,Xinyi Lin,Gaoshan Huang,Alexander A. Solovev,Jizhai Cui,Tianlong Li,Yongfeng Mei
出处
期刊:Applied Materials Today [Elsevier]
卷期号:25: 101237-101237 被引量:34
标识
DOI:10.1016/j.apmt.2021.101237
摘要

• Soft helical microrobots were fabricated using a microfluidic strategy. • Mechanical property can be tuned by adjusting material composition and post ion solution treatment. • The soft microrobot can actively pass through narrow and sinuous microchannels by adaptive deformation. • The soft microrobot exhibits unique tightening when swimming in viscous liquids. Recent strides in microfabrication technologies offer important possibilities for developing microscale robotic systems with enhanced power, functionality and versatility. Previous microrobots fabricated by lithographic techniques usually lack the ability to adaptively deform in confined and constricted spaces and navigate through, therefore hindering their applications in complex biological environments. Here, a microfluidic strategy is combined with a dip-coating process for continuous fabrication of soft helical structures with controllable mechanical property as magnetically propelled microrobots, capable of actively propelling through narrow and sinuous microchannels. Because of their self-adaptive deformation capability, the magnetically propelled soft microrobots can actively navigate through a narrow opening, 2.21 times smaller than the sectional area of the microrobot, and a U-shape-bent capillary, directed by a programmed magnetic field. Additionally, the soft microrobot demonstrates increased swimming speed in a fluid of high viscosity, because of the adaptive tightening deformation of the helix when swimming. This new magnetically propelled soft microrobot and its attractive performance will open up new possibilities for biomedical operation at the micro and nanoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来自三百完成签到 ,获得积分10
刚刚
小马甲应助suliuyin采纳,获得10
刚刚
刚刚
QingFeng完成签到 ,获得积分10
1秒前
1秒前
科研通AI6.1应助郑匕采纳,获得10
2秒前
思源应助优秀采纳,获得10
2秒前
易水寒完成签到,获得积分10
2秒前
陌上花开发布了新的文献求助10
3秒前
英姑应助发一篇sci采纳,获得10
3秒前
领导范儿应助Tac1采纳,获得10
4秒前
隐形的大有完成签到,获得积分10
5秒前
隐形曼青应助XMH采纳,获得10
5秒前
5秒前
Chris完成签到,获得积分10
7秒前
丘比特应助charming采纳,获得10
7秒前
自觉的躺平完成签到 ,获得积分10
7秒前
8秒前
MrWang发布了新的文献求助10
8秒前
真ikun完成签到,获得积分20
8秒前
天天快乐应助小如要努力采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助30
10秒前
10秒前
NexusExplorer应助刘刚松采纳,获得10
11秒前
hhhh完成签到,获得积分10
12秒前
Panini完成签到 ,获得积分10
12秒前
小陶子完成签到,获得积分10
12秒前
XXXXX完成签到 ,获得积分10
14秒前
14秒前
Mcarry发布了新的文献求助10
15秒前
wowowowowu完成签到 ,获得积分10
15秒前
15秒前
15秒前
好晒发布了新的文献求助10
16秒前
18秒前
勤奋旭尧完成签到,获得积分10
18秒前
忧郁如柏完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722