Magnetically propelled soft microrobot navigating through constricted microchannels

纳米技术 材料科学 机械工程 机械 物理 工程类
作者
Jinrun Liu,Shimin Yu,Borui Xu,Ziao Tian,Hehua Zhang,Kaipeng Liu,Xiaojie Shi,Zhe Zhao,Chang Liu,Xinyi Lin,Gaoshan Huang,Alexander A. Solovev,Jizhai Cui,Tianlong Li,Yongfeng Mei
出处
期刊:Applied Materials Today [Elsevier]
卷期号:25: 101237-101237 被引量:34
标识
DOI:10.1016/j.apmt.2021.101237
摘要

• Soft helical microrobots were fabricated using a microfluidic strategy. • Mechanical property can be tuned by adjusting material composition and post ion solution treatment. • The soft microrobot can actively pass through narrow and sinuous microchannels by adaptive deformation. • The soft microrobot exhibits unique tightening when swimming in viscous liquids. Recent strides in microfabrication technologies offer important possibilities for developing microscale robotic systems with enhanced power, functionality and versatility. Previous microrobots fabricated by lithographic techniques usually lack the ability to adaptively deform in confined and constricted spaces and navigate through, therefore hindering their applications in complex biological environments. Here, a microfluidic strategy is combined with a dip-coating process for continuous fabrication of soft helical structures with controllable mechanical property as magnetically propelled microrobots, capable of actively propelling through narrow and sinuous microchannels. Because of their self-adaptive deformation capability, the magnetically propelled soft microrobots can actively navigate through a narrow opening, 2.21 times smaller than the sectional area of the microrobot, and a U-shape-bent capillary, directed by a programmed magnetic field. Additionally, the soft microrobot demonstrates increased swimming speed in a fluid of high viscosity, because of the adaptive tightening deformation of the helix when swimming. This new magnetically propelled soft microrobot and its attractive performance will open up new possibilities for biomedical operation at the micro and nanoscale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freebird完成签到,获得积分10
1秒前
包容的忆灵完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
寒冷尔柳完成签到 ,获得积分10
3秒前
5秒前
jie完成签到 ,获得积分10
5秒前
yywang发布了新的文献求助10
5秒前
小平完成签到 ,获得积分10
6秒前
ROMANTIC完成签到 ,获得积分10
6秒前
mickiller完成签到,获得积分10
7秒前
充电宝应助freebird采纳,获得10
8秒前
David完成签到 ,获得积分10
8秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
8秒前
ATOM完成签到,获得积分20
9秒前
10秒前
小七2022完成签到,获得积分10
11秒前
安详的冷安完成签到,获得积分10
11秒前
CHOU完成签到 ,获得积分10
13秒前
13秒前
小白鞋完成签到 ,获得积分10
13秒前
14秒前
14秒前
蛋花肉圆汤完成签到,获得积分0
14秒前
李思雨完成签到 ,获得积分10
14秒前
美文完成签到,获得积分10
15秒前
bkagyin应助henry先森采纳,获得10
15秒前
小芒果完成签到,获得积分0
16秒前
hua完成签到,获得积分10
16秒前
七克完成签到 ,获得积分10
16秒前
wf完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
无辜的行云完成签到 ,获得积分0
20秒前
Annie完成签到 ,获得积分10
22秒前
0美团外卖0完成签到,获得积分10
22秒前
kellen完成签到,获得积分10
22秒前
一只找论文的小云朵完成签到,获得积分10
23秒前
火山啊啊啊完成签到 ,获得积分10
23秒前
Lin完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
jie完成签到 ,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006