Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation

材料科学 光电子学 异质结 电气工程 神经形态工程学 纳米技术 计算机科学 工程类 人工神经网络 机器学习
作者
Caifang Gao,Qianfan Nie,Che‐Yi Lin,Fanming Huang,Liangjun Wang,Wei Xia,Xiang Wang,Zhigao Hu,Mengjiao Li,Hongwei Lu,Ying‐Chih Lai,Yen‐Fu Lin,Junhao Chu,Wenwu Li
出处
期刊:Nano Energy [Elsevier]
卷期号:91: 106659-106659 被引量:19
标识
DOI:10.1016/j.nanoen.2021.106659
摘要

Neuromorphic electronics with two-dimensional van der Waals materials meet the ever-increasing demands of both the semiconductor industry and biological engineering, such as miniaturization, structure flexibility, multifunctionality, and low power consumption. However, the majority of reported electronic devices achieve multifarious memory storage states or synaptic plasticity through regulation of an electrical or an optical signal. Herein, we propose an innovative touch-modulated device based on an indium selenide/hexagonal boron nitride/graphene van der Waals heterostructure coupled with a triboelectric nanogenerator. The device is prepared utilizing a simple copper grid shadow mask instead of the expensive and cumbersome electron beam lithography process, exhibits high mobility of 829 cm2 V−1 s−1, low voltage, and low power consumption. Nonvolatile memory with self-writing power, durability and multibit data storage is achieved through mechanical modulation without an additional gate-voltage supply. Moreover, by adjusting the distance between the two friction layers, essential synaptic plasticity, including short-term and long-term potentiation/depression and paired-pulse facilitation/depression, are successfully imitated in the device. Most importantly, we achieve ultralow power consumption of 165 aJ in tribotronic synapses owing to the ultra-high mobility of InSe. Our tribotronic synapse with self-writing power has great potential to simulate the low-power-consuming neuromorphic bioelectronic devices with multiple functions and lays the foundation for future advanced neuromorphic systems and artificial intelligence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过以亦完成签到,获得积分10
1秒前
科研通AI6应助港崽宝宝采纳,获得10
1秒前
1秒前
Xiaoxiannv完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
科研小白完成签到,获得积分10
3秒前
盛夏如花发布了新的文献求助10
3秒前
Awake发布了新的文献求助20
3秒前
3秒前
GD88完成签到,获得积分10
3秒前
拒绝后防化服完成签到,获得积分10
3秒前
热心的诗蕊完成签到,获得积分10
4秒前
欢欢完成签到,获得积分10
4秒前
墨雪归青发布了新的文献求助10
4秒前
杂货铺老板娘完成签到,获得积分10
5秒前
傅凡桃发布了新的文献求助10
5秒前
颜靖仇发布了新的文献求助10
5秒前
5秒前
QuarkQD完成签到 ,获得积分10
5秒前
LZCCC发布了新的文献求助10
6秒前
6秒前
7秒前
JFP完成签到,获得积分10
7秒前
DOKEN完成签到,获得积分10
7秒前
Liu_cx完成签到,获得积分10
7秒前
GD88发布了新的文献求助10
7秒前
Jzy发布了新的文献求助50
7秒前
kkk完成签到,获得积分10
8秒前
8秒前
8秒前
高贵振家完成签到,获得积分10
8秒前
yanglinhai完成签到 ,获得积分10
8秒前
殷勤的秋完成签到 ,获得积分10
8秒前
WenyHe发布了新的文献求助10
8秒前
文雨完成签到,获得积分10
8秒前
dongdong完成签到,获得积分10
9秒前
znlion完成签到,获得积分10
9秒前
星辰大海应助shining采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551