Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation

材料科学 光电子学 异质结 电气工程 神经形态工程学 纳米技术 计算机科学 工程类 人工神经网络 机器学习
作者
Caifang Gao,Qianfan Nie,Che‐Yi Lin,Fanming Huang,Liangjun Wang,Wei Xia,Xiang Wang,Zhigao Hu,Mengjiao Li,Hongwei Lu,Ying‐Chih Lai,Yen‐Fu Lin,Junhao Chu,Wenwu Li
出处
期刊:Nano Energy [Elsevier BV]
卷期号:91: 106659-106659 被引量:19
标识
DOI:10.1016/j.nanoen.2021.106659
摘要

Neuromorphic electronics with two-dimensional van der Waals materials meet the ever-increasing demands of both the semiconductor industry and biological engineering, such as miniaturization, structure flexibility, multifunctionality, and low power consumption. However, the majority of reported electronic devices achieve multifarious memory storage states or synaptic plasticity through regulation of an electrical or an optical signal. Herein, we propose an innovative touch-modulated device based on an indium selenide/hexagonal boron nitride/graphene van der Waals heterostructure coupled with a triboelectric nanogenerator. The device is prepared utilizing a simple copper grid shadow mask instead of the expensive and cumbersome electron beam lithography process, exhibits high mobility of 829 cm2 V−1 s−1, low voltage, and low power consumption. Nonvolatile memory with self-writing power, durability and multibit data storage is achieved through mechanical modulation without an additional gate-voltage supply. Moreover, by adjusting the distance between the two friction layers, essential synaptic plasticity, including short-term and long-term potentiation/depression and paired-pulse facilitation/depression, are successfully imitated in the device. Most importantly, we achieve ultralow power consumption of 165 aJ in tribotronic synapses owing to the ultra-high mobility of InSe. Our tribotronic synapse with self-writing power has great potential to simulate the low-power-consuming neuromorphic bioelectronic devices with multiple functions and lays the foundation for future advanced neuromorphic systems and artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘大强完成签到,获得积分10
刚刚
科研通AI6应助鲁万仇采纳,获得10
刚刚
一只五条悟完成签到,获得积分10
1秒前
1秒前
FashionBoy应助Weaver_312采纳,获得30
1秒前
2秒前
爆米花应助荣浩宇采纳,获得10
2秒前
2秒前
搜集达人应助浮浮世世采纳,获得10
2秒前
共享精神应助小超人采纳,获得10
3秒前
小靳发布了新的文献求助10
3秒前
贤惠的zre完成签到,获得积分10
3秒前
Xiaohu完成签到,获得积分10
3秒前
3秒前
3秒前
PTERTIM247发布了新的文献求助10
3秒前
3秒前
3秒前
清爽水风完成签到,获得积分20
3秒前
希腊白留下了新的社区评论
4秒前
大模型应助just采纳,获得10
4秒前
4秒前
隐形铃铛完成签到,获得积分10
5秒前
6秒前
zhiyu发布了新的文献求助20
6秒前
万默发布了新的文献求助10
6秒前
cleva完成签到,获得积分10
6秒前
lrrrrrrr发布了新的文献求助10
8秒前
FashionBoy应助duts采纳,获得10
8秒前
8秒前
李健的小迷弟应助当归采纳,获得10
8秒前
8秒前
阿九发布了新的文献求助10
8秒前
STAN完成签到,获得积分20
8秒前
香蕉觅云应助WDZ采纳,获得10
9秒前
NTHU_KAO发布了新的文献求助10
9秒前
9秒前
9秒前
煎锅完成签到,获得积分10
10秒前
隐形铃铛发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258269
求助须知:如何正确求助?哪些是违规求助? 4420207
关于积分的说明 13759573
捐赠科研通 4293737
什么是DOI,文献DOI怎么找? 2356114
邀请新用户注册赠送积分活动 1352458
关于科研通互助平台的介绍 1313270