Helping Automated Vehicles With Left-Turn Maneuvers: A Game Theory-Based Decision Framework for Conflicting Maneuvers at Intersections

软件部署 钥匙(锁) 领域(数学) 感知 工程类 计算机科学 模拟 人机交互 计算机安全 数学 生物 操作系统 神经科学 纯数学
作者
Yalda Rahmati,Mohammadreza Khajeh Hosseini,Alireza Talebpour
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 11877-11890 被引量:29
标识
DOI:10.1109/tits.2021.3108409
摘要

The deployment of connected, automated vehicles (CAVs) provides the opportunity to enhance the safety and efficiency of transportation systems. However, despite the rapid development of this technology, human-driven vehicles are predicted to predominate the vehicle fleet, compelling CAVs to be able to operate in a mixed traffic environment. The key to achieving a reliable and safe human-CAV collaboration in such environments is to characterize the interactions between the actors and incorporate the underlying decision-making mechanism of human drivers into CAVs' motion planning algorithms. Towards this goal and extending a previously developed game theoretical model, the present study proposes a decision-making dynamic to achieve more realistic models of human behavior when making conflicting maneuvers at intersections. A novel field test is conducted to extract the required modeling data directly from CAVs' perception system, facilitating the incorporation of the model into CAV navigation algorithms. Model validation and sensitivity analysis provided invaluable insights into the nature of human decisions and indicated that the proposed structure is robust to environmental uncertainties and can well capture the real-world behavior of human drivers in unprotected left-turn maneuvers. The derived knowledge can be directly used in CAV motion planning algorithms to provide the vehicle with more accurate predictions of human actions when operating in mixed traffic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Fingerprints完成签到 ,获得积分10
1秒前
2秒前
曹亚伟发布了新的文献求助10
2秒前
2秒前
YAO发布了新的文献求助10
5秒前
chen发布了新的文献求助10
5秒前
bkagyin应助杰bro采纳,获得10
5秒前
1218完成签到 ,获得积分10
8秒前
CC发布了新的文献求助10
8秒前
hongxuezhi完成签到,获得积分10
9秒前
9秒前
wQ1ng应助777采纳,获得10
11秒前
12秒前
clamon完成签到,获得积分10
13秒前
科研通AI5应助雷雷采纳,获得10
13秒前
soss完成签到,获得积分10
14秒前
Ldq发布了新的文献求助10
15秒前
mountainbike完成签到,获得积分10
16秒前
17秒前
菜鸡5号发布了新的文献求助20
18秒前
19秒前
tianyi2347发布了新的文献求助10
20秒前
陈chen发布了新的文献求助10
21秒前
闪闪书桃完成签到,获得积分10
21秒前
科研通AI5应助zzww采纳,获得10
22秒前
29秒前
纯乏完成签到,获得积分10
30秒前
小米发布了新的文献求助10
33秒前
耳东陈完成签到 ,获得积分10
33秒前
小落完成签到 ,获得积分10
34秒前
SciGPT应助HJJHJH采纳,获得10
35秒前
且欣且行完成签到 ,获得积分10
35秒前
雷雷发布了新的文献求助10
35秒前
闪亮的季节完成签到,获得积分10
35秒前
37秒前
39秒前
chen完成签到,获得积分10
40秒前
sam发布了新的文献求助10
40秒前
40秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355