Helping Automated Vehicles With Left-Turn Maneuvers: A Game Theory-Based Decision Framework for Conflicting Maneuvers at Intersections

软件部署 钥匙(锁) 领域(数学) 感知 工程类 计算机科学 模拟 人机交互 计算机安全 数学 生物 操作系统 神经科学 纯数学
作者
Yalda Rahmati,Mohammadreza Khajeh Hosseini,Alireza Talebpour
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 11877-11890 被引量:27
标识
DOI:10.1109/tits.2021.3108409
摘要

The deployment of connected, automated vehicles (CAVs) provides the opportunity to enhance the safety and efficiency of transportation systems. However, despite the rapid development of this technology, human-driven vehicles are predicted to predominate the vehicle fleet, compelling CAVs to be able to operate in a mixed traffic environment. The key to achieving a reliable and safe human-CAV collaboration in such environments is to characterize the interactions between the actors and incorporate the underlying decision-making mechanism of human drivers into CAVs' motion planning algorithms. Towards this goal and extending a previously developed game theoretical model, the present study proposes a decision-making dynamic to achieve more realistic models of human behavior when making conflicting maneuvers at intersections. A novel field test is conducted to extract the required modeling data directly from CAVs' perception system, facilitating the incorporation of the model into CAV navigation algorithms. Model validation and sensitivity analysis provided invaluable insights into the nature of human decisions and indicated that the proposed structure is robust to environmental uncertainties and can well capture the real-world behavior of human drivers in unprotected left-turn maneuvers. The derived knowledge can be directly used in CAV motion planning algorithms to provide the vehicle with more accurate predictions of human actions when operating in mixed traffic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻曼冬完成签到 ,获得积分10
刚刚
刚刚
刚刚
9209完成签到 ,获得积分10
刚刚
1秒前
ranqi发布了新的文献求助10
1秒前
云落完成签到,获得积分10
1秒前
田様应助杨枝甘露樱桃采纳,获得10
1秒前
冲浪男孩226完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
现实的曼荷关注了科研通微信公众号
3秒前
3秒前
邓佳鑫Alan应助uniphoton采纳,获得10
3秒前
3秒前
英姑应助cc采纳,获得10
3秒前
MM完成签到,获得积分10
4秒前
lyn发布了新的文献求助10
4秒前
koipp发布了新的文献求助10
4秒前
Rebecca发布了新的文献求助10
5秒前
pinging应助愉快冰淇淋采纳,获得10
5秒前
不厌发布了新的文献求助100
5秒前
6秒前
cherry发布了新的文献求助10
6秒前
CodeCraft应助马洛采纳,获得10
7秒前
十七完成签到,获得积分10
7秒前
8秒前
兴奋汽车完成签到,获得积分10
8秒前
学就完了完成签到,获得积分10
8秒前
张志顺发布了新的文献求助10
8秒前
岁月轮回发布了新的文献求助10
8秒前
长情洙发布了新的文献求助10
8秒前
Rickstein完成签到,获得积分10
9秒前
炙热冰夏完成签到,获得积分10
9秒前
iNk应助兴奋汽车采纳,获得10
10秒前
共享精神应助kingwhitewing采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762