Helping Automated Vehicles With Left-Turn Maneuvers: A Game Theory-Based Decision Framework for Conflicting Maneuvers at Intersections

软件部署 钥匙(锁) 领域(数学) 感知 工程类 计算机科学 模拟 人机交互 计算机安全 数学 生物 操作系统 神经科学 纯数学
作者
Yalda Rahmati,Mohammadreza Khajeh Hosseini,Alireza Talebpour
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 11877-11890 被引量:27
标识
DOI:10.1109/tits.2021.3108409
摘要

The deployment of connected, automated vehicles (CAVs) provides the opportunity to enhance the safety and efficiency of transportation systems. However, despite the rapid development of this technology, human-driven vehicles are predicted to predominate the vehicle fleet, compelling CAVs to be able to operate in a mixed traffic environment. The key to achieving a reliable and safe human-CAV collaboration in such environments is to characterize the interactions between the actors and incorporate the underlying decision-making mechanism of human drivers into CAVs' motion planning algorithms. Towards this goal and extending a previously developed game theoretical model, the present study proposes a decision-making dynamic to achieve more realistic models of human behavior when making conflicting maneuvers at intersections. A novel field test is conducted to extract the required modeling data directly from CAVs' perception system, facilitating the incorporation of the model into CAV navigation algorithms. Model validation and sensitivity analysis provided invaluable insights into the nature of human decisions and indicated that the proposed structure is robust to environmental uncertainties and can well capture the real-world behavior of human drivers in unprotected left-turn maneuvers. The derived knowledge can be directly used in CAV motion planning algorithms to provide the vehicle with more accurate predictions of human actions when operating in mixed traffic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuGe完成签到,获得积分10
刚刚
彭于晏应助tang采纳,获得10
1秒前
2秒前
嘉心糖应助ddd采纳,获得30
3秒前
4秒前
5秒前
6秒前
莹cy完成签到 ,获得积分10
8秒前
9秒前
library2025应助冷酷的柜门采纳,获得10
10秒前
Lucas应助Y123采纳,获得10
11秒前
Akim应助guoxihan采纳,获得10
12秒前
Yang发布了新的文献求助10
12秒前
111完成签到,获得积分10
13秒前
情怀应助柔弱亦寒采纳,获得10
14秒前
田様应助鹏哥爱科研采纳,获得10
15秒前
顾矜应助搁浅采纳,获得10
15秒前
飞飞鱼完成签到,获得积分10
16秒前
20秒前
21秒前
郭富县城完成签到,获得积分10
21秒前
SSSDDDYYY发布了新的文献求助10
21秒前
21秒前
22秒前
空白掉落完成签到 ,获得积分10
23秒前
25秒前
Y123发布了新的文献求助10
25秒前
sissi应助狗子爱吃桃桃采纳,获得30
25秒前
李八八完成签到,获得积分10
26秒前
冷酷的柜门完成签到,获得积分10
27秒前
柔弱亦寒发布了新的文献求助10
28秒前
28秒前
28秒前
星辰大海应助ido采纳,获得10
28秒前
人木发布了新的文献求助10
31秒前
31秒前
32秒前
领导范儿应助梨涡采纳,获得10
32秒前
传奇3应助Yang采纳,获得10
32秒前
姜忆霜发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306895
求助须知:如何正确求助?哪些是违规求助? 2940756
关于积分的说明 8498339
捐赠科研通 2614923
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648297