表观遗传学
医学
肺动脉高压
疾病
生物信息学
BMPR2型
癌症研究
炎症
胚胎血管重塑
生物
病理
免疫学
内科学
骨形态发生蛋白
基因
生物化学
摘要
Pulmonary arterial hypertension (PAH) is a rare disease characterized by an obliterative vasculopathy of the distal pulmonary circulation that results in severe elevation in pulmonary pressure and pulmonary vascular resistance. PAH is a progressive and devastating disease that usually results in right heart failure and death. Currently available medications have only moderate effects and none are curative. Thus, there is a pressing need for new pharmacologic approaches to this disease. In order to meaningfully advance the treatment of PAH, new agents must target the underlying cause of disease induction and progression. This review discusses the extensive work that has been done in the areas of altered glucose metabolism, tyrosine kinase inhibitions, signaling pathways associated with disease causing gene mutations such as the bone morphogenic protein receptor 2, and inflammation and immunomodulation including the effects of mesenchymal stem cells and the extracellular vesicles they secrete. Epigenetic modifications including the roles of micro RNAs, DNA methylation, histone acetylation and transcription factors that modulate pulmonary vascular remodeling are also reviewed. A brief background of each area of interest is provided with emphasis on those components that have potential to be exploited for the treatment of PAH. Significant findings of cell-based and animal studies and, where available, the results of early clinical trials, are presented to illustrate the potential of these novel therapeutic targets. Current challenges to the development of small peptides and biologicals for the treatment of PAH and direction for future studies are also briefly discussed. © 2021 American Physiological Society. Compr Physiol 11:1-53, 2021.
科研通智能强力驱动
Strongly Powered by AbleSci AI