3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification

点云 计算机科学 分割 人工智能 人工神经网络 比例(比率) 采样(信号处理) 计算机视觉 模式识别(心理学) 地理 地图学 滤波器(信号处理)
作者
Yi Chen,Xiaofei Yi,Baohua Zhang,Jun Zhou,Qian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106445-106445 被引量:30
标识
DOI:10.1016/j.compag.2021.106445
摘要

In recent years, with the development of computer vision, deep learning, and artificial intelligence technologies, the popularity of depth sensors and lidar has promoted the rapid development of three-dimensional (3D) point cloud semantic segmentation. The semantic segmentation of 3D point clouds for large-scale unstructured agricultural scenes is important for agricultural robots to perceive their surrounding environment, and for autonomous navigation and positioning and autonomous scene understanding. In this study, the problem of 3D point cloud semantic segmentation for large-scale unstructured agricultural scenes was studied. By improving the neural network structure of RandLA-Net, a deeper 3D point cloud semantic segmentation neural network model for large-scale unstructured agricultural scenes was built, and good experimental results were obtained. The local feature aggregation module in RandLA-Net was integrated and improved to achieve 3D point cloud semantic segmentation for large-scale unstructured agricultural scenes. To test the influence of the 3D point cloud sampling algorithm on the overall accuracy (OA) and mean intersection-over-union (mIoU) of semantic segmentation, the random sampling algorithm and farthest point sampling algorithm were used to build two models with the same neural network structure. The test results show that the sampling algorithm has little effect on the OA and mIoU of 3D point cloud semantic segmentation, and the final result depends mainly on the extraction of 3D point cloud features. In addition, two different Semantic3D datasets were used to test the effect of the datasets on the generalization ability of the model, and the results showed that the datasets had an important effect on the neural network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
monica完成签到,获得积分10
1秒前
无情凡英完成签到,获得积分10
2秒前
3秒前
桐桐应助南山无玫落采纳,获得10
3秒前
4秒前
monica发布了新的文献求助20
5秒前
小海狸完成签到,获得积分10
6秒前
搜集达人应助欣慰煎饼采纳,获得10
10秒前
zeng发布了新的文献求助10
10秒前
华仔应助小章子冰箱采纳,获得10
11秒前
风中的夕阳完成签到,获得积分20
12秒前
汤乌完成签到,获得积分20
14秒前
吃花生酱的猫完成签到,获得积分10
15秒前
艺术家脾气完成签到,获得积分10
15秒前
LVVVB完成签到,获得积分10
20秒前
24秒前
玄音完成签到,获得积分10
25秒前
25秒前
图南完成签到 ,获得积分20
28秒前
科研通AI2S应助笨笨雪碧采纳,获得10
29秒前
欣慰煎饼发布了新的文献求助10
31秒前
seashell发布了新的文献求助10
31秒前
迷路藏今应助zeng采纳,获得10
32秒前
飘逸的麦片完成签到,获得积分10
34秒前
hanlanx完成签到,获得积分10
35秒前
大额完成签到,获得积分10
38秒前
星辰大海应助欣慰煎饼采纳,获得10
41秒前
41秒前
Gu完成签到,获得积分10
41秒前
科研通AI2S应助大额采纳,获得10
46秒前
47秒前
虎哥发布了新的文献求助10
51秒前
所所应助科研通管家采纳,获得10
53秒前
53秒前
坚强亦丝应助科研通管家采纳,获得10
53秒前
田様应助科研通管家采纳,获得10
54秒前
54秒前
54秒前
Ava应助科研通管家采纳,获得10
54秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3278872
求助须知:如何正确求助?哪些是违规求助? 2917180
关于积分的说明 8385322
捐赠科研通 2588037
什么是DOI,文献DOI怎么找? 1409957
科研通“疑难数据库(出版商)”最低求助积分说明 657549
邀请新用户注册赠送积分活动 638620