Intricacies of single-cell multi-omics data integration

生物 模式 抽象 计算生物学 细胞 基本事实 变化(天文学) 生物学数据 数据集成 计算机科学 数据科学 生物信息学 人工智能 数据挖掘 遗传学 物理 哲学 社会学 认识论 天体物理学 社会科学
作者
Pia Rautenstrauch,Anna Hendrika Cornelia Vlot,Sepideh Saran,Uwe Ohler
出处
期刊:Trends in Genetics [Elsevier]
卷期号:38 (2): 128-139 被引量:30
标识
DOI:10.1016/j.tig.2021.08.012
摘要

Identifying cell-to-cell correspondences between unpaired datasets from different single cell protocols promises to provide a more comprehensive view of cellular states. Integration of unpaired data from multiple modalities is more complicated than single-omics integration due to a lack of feature correspondence across modalities and ground truth information about biological differences between modalities. Retention of biological variation during multi-omic data integration has been insufficiently addressed to date, but is essential to leverage complementary information from different omics layers. Ground truth data can now be provided by new paired multi-omics assays. This will inform robust associations between features of different modalities and reveal modality-specific biological patterns that may also help to improve methods for multimodal integration of unpaired data. A wealth of single-cell protocols makes it possible to characterize different molecular layers at unprecedented resolution. Integrating the resulting multimodal single-cell data to find cell-to-cell correspondences remains a challenge. We argue that data integration needs to happen at a meaningful biological level of abstraction and that it is necessary to consider the inherent discrepancies between modalities to strike a balance between biological discovery and noise removal. A survey of current methods reveals that a distinction between technical and biological origins of presumed unwanted variation between datasets is not yet commonly considered. The increasing availability of paired multimodal data will aid the development of improved methods by providing a ground truth on cell-to-cell matches. A wealth of single-cell protocols makes it possible to characterize different molecular layers at unprecedented resolution. Integrating the resulting multimodal single-cell data to find cell-to-cell correspondences remains a challenge. We argue that data integration needs to happen at a meaningful biological level of abstraction and that it is necessary to consider the inherent discrepancies between modalities to strike a balance between biological discovery and noise removal. A survey of current methods reveals that a distinction between technical and biological origins of presumed unwanted variation between datasets is not yet commonly considered. The increasing availability of paired multimodal data will aid the development of improved methods by providing a ground truth on cell-to-cell matches. a low-dimensional representation of the high-dimensional data. a quantifiable characteristic of a cell. For example, in the context of scRNA-seq, the expression level of each gene is a feature. For scATAC-seq, the features are the accessibilities of defined genomic regions. features from two or more datasets refer to the same entities (e.g., genes). a matrix that aggregates quantitative genome-level data (e.g., chromatin accessibility or DNA methylation data) to the gene level. process in which the information encoded in genes is transformed into functional gene products, such as proteins or functional RNA molecules. In the context of single-cell analysis it often refers to steady-state mRNA levels in the cell measured by scRNA-seq (i.e., an intermediate step of the gene expression process). a parameter that specifies a part of the method setting and often needs to be selected by the user. combining data from different sources into a unified view. transferring cell or cluster labels to a different dataset based on similarities to the source dataset. a topological space that preserves the neighborhood structure of a dataset. A manifold can be used to represent high-dimensional biological data in a lower-dimensional space that is easier to analyze while maintaining the original dataset information. a mode in which the cell exists (i.e., gene expression space or chromatin accessibility space). The term modality is often used to refer to different data types that assay these very modes. a specific aspect of the cell’s molecular biology that is represented by a set of biomolecules or their state. Examples of molecular layers include the chromatin state, gene expression levels, and protein levels. involving information from two or more modalities. Also see modality. data where different modalities are measured in the same single cell. a linear dimensionality reduction technique that reduces the number of features of a dataset while preserving most of the variation in the original dataset. a training strategy for machine learning where at least a small amount of labeled data is required. a function that provides a similarity measure between vectors (i.e., gene expression vectors for two cells). methods that profile the entire gene expression profile of individual cells. methods for the genome-wide profiling of open chromatin regions in individual cells. a statistic that describes feature importance for a specific sample (i.e., how important a particular open chromatin region is for a specific cell). a nonlinear dimensionality reduction technique that reduces the number of features of a dataset while preserving the similarity between data points from the original dataset. involving information from a single modality. Also see modality. data where different modalities are measured in distinct cells. a training strategy for machine learning that only uses unlabeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ff完成签到,获得积分10
刚刚
1秒前
邱丽膏完成签到,获得积分10
1秒前
xiaooooo发布了新的文献求助10
2秒前
2秒前
2秒前
啦啦啦完成签到,获得积分10
2秒前
jopaul完成签到,获得积分10
3秒前
4秒前
ccch发布了新的文献求助10
4秒前
善学以致用应助邱丽膏采纳,获得10
4秒前
luo完成签到,获得积分10
4秒前
科研通AI2S应助paperlovesme采纳,获得10
4秒前
5秒前
Leonardi应助guoxingliu采纳,获得200
5秒前
木子完成签到 ,获得积分10
5秒前
ada阿达完成签到,获得积分10
5秒前
活泼的抽屉完成签到,获得积分10
5秒前
linxi完成签到,获得积分10
5秒前
6秒前
小芳芳发布了新的文献求助10
6秒前
高挑的寒松完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
苯二氮卓完成签到,获得积分10
8秒前
隐形的飞雪完成签到,获得积分10
9秒前
9秒前
9秒前
DrW1111发布了新的文献求助10
10秒前
爱学习的YY完成签到 ,获得积分10
10秒前
李希有发布了新的文献求助10
10秒前
NexusExplorer应助美丽电源采纳,获得10
10秒前
10秒前
幽默的小猫咪完成签到 ,获得积分10
10秒前
影子发布了新的文献求助10
11秒前
11秒前
俊逸山芙完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813