Improved breast cancer histological grading using deep learning

医学 危险系数 分级(工程) 组织病理学 比例危险模型 置信区间 危险分层 乳腺癌 回顾性队列研究 观察研究 肿瘤科 癌症 内科学 病理 工程类 土木工程
作者
Yinxi Wang,Balázs Ács,Stephanie Robertson,B. Liu,Leslie Solorzano,Carolina Wählby,Johan Hartman,Mattias Rantalainen
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:33 (1): 89-98 被引量:120
标识
DOI:10.1016/j.annonc.2021.09.007
摘要

The Nottingham histological grade (NHG) is a well-established prognostic factor for breast cancer that is broadly used in clinical decision making. However, ∼50% of patients are classified as grade 2, an intermediate risk group with low clinical value. To improve risk stratification of NHG 2 breast cancer patients, we developed and validated a novel histological grade model (DeepGrade) based on digital whole-slide histopathology images (WSIs) and deep learning.In this observational retrospective study, routine WSIs stained with haematoxylin and eosin from 1567 patients were utilised for model optimisation and validation. Model generalisability was further evaluated in an external test set with 1262 patients. NHG 2 cases were stratified into two groups, DG2-high and DG2-low, and the prognostic value was assessed. The main outcome was recurrence-free survival.DeepGrade provides independent prognostic information for stratification of NHG 2 cases in the internal test set, where DG2-high showed an increased risk for recurrence (hazard ratio [HR] 2.94, 95% confidence interval [CI] 1.24-6.97, P = 0.015) compared with the DG2-low group after adjusting for established risk factors (independent test data). DG2-low also shared phenotypic similarities with NHG 1, and DG2-high with NHG 3, suggesting that the model identifies morphological patterns in NHG 2 that are associated with more aggressive tumours. The prognostic value of DeepGrade was further assessed in the external test set, confirming an increased risk for recurrence in DG2-high (HR 1.91, 95% CI 1.11-3.29, P = 0.019).The proposed model-based stratification of patients with NHG 2 tumours is prognostic and adds clinically relevant information over routine histological grading. The methodology offers a cost-effective alternative to molecular profiling to extract information relevant for clinical decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
1秒前
王一博完成签到,获得积分10
2秒前
daling完成签到,获得积分10
2秒前
深情安青应助小卤蛋采纳,获得10
2秒前
所所应助奶茶咖啡冻采纳,获得10
2秒前
12458发布了新的文献求助10
2秒前
李爱国应助凯蒂采纳,获得10
2秒前
bkagyin应助Jason采纳,获得10
3秒前
zhangjw完成签到 ,获得积分10
3秒前
3秒前
陈大咩完成签到,获得积分10
3秒前
在水一方应助Jowill采纳,获得10
6秒前
甜甜映菡完成签到,获得积分10
7秒前
芒琪完成签到 ,获得积分10
7秒前
淡淡奇异果完成签到,获得积分20
8秒前
9秒前
10秒前
CHR发布了新的文献求助10
10秒前
fsznc1完成签到 ,获得积分0
11秒前
和谐的芷天完成签到,获得积分10
13秒前
13秒前
白河夜船发布了新的文献求助10
15秒前
小卤蛋完成签到,获得积分20
16秒前
潮哈哈耶完成签到,获得积分10
16秒前
太阳发布了新的文献求助10
16秒前
18秒前
18秒前
爱听歌的梦易完成签到 ,获得积分10
18秒前
MM11111完成签到,获得积分10
18秒前
20秒前
21秒前
白河夜船完成签到,获得积分10
21秒前
21秒前
22秒前
Jasper应助CHR采纳,获得10
22秒前
Suki发布了新的文献求助10
23秒前
小卤蛋发布了新的文献求助10
23秒前
111发布了新的文献求助10
25秒前
26秒前
42发布了新的文献求助50
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198