Insights into the local structure, microstructure and ionic conductivity of silicon doped NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12

材料科学 离子电导率 晶界 电解质 兴奋剂 快离子导体 电导率 烧结 化学工程 晶粒异常长大 离子键合 微观结构 无机化学 复合材料 冶金 离子 电极 光电子学 物理化学 化学 有机化学 工程类
作者
Jianping Zhu,Yuxuan Xiang,Jun Zhao,Hongchun Wang,Yixiao Li,Bizhu Zheng,Huajin He,Zhongru Zhang,Jianyu Huang,Yong Yang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:44: 190-196 被引量:51
标识
DOI:10.1016/j.ensm.2021.10.003
摘要

NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12 (LATP) is attractive because of the cheap raw materials, excellent air stability, and high ionic conductivity. Silicon doping is generally adopted to improve its conductivity further, but the corresponding mechanism is vacant. Herein, we synthesize the silicon doped LATP electrolyte with a simple solution-based method and systemically investigate the effects of different silicon doping level on the local structure, microstructure and ionic diffusion kinetics of the solid electrolytes. We firstly put forward the octahedral occupation of silicon in Li1.3Al0.3Ti1.7P3O12 electrolyte instead of tetrahedral sites. Silicon doping is found to be negative for the ionic transportation in grain bulk, however, the grain boundary conductivity can be increased after a small amount of silicon doping due to the modification of micro-structure, i, e., the silicon doping induces the segregation of LiTiOPO4 in the grain boundary, which can effectively suppress the abnormal growth of electrolyte grains and concomitant gas pores and cracks during sintering. As a result, the total conductivity can reach ∼10−3 S⋅cm−1 after silicon doping with this simple method. Our results demonstrate the critical importance of adjusting secondary phase on the micro-structure and ionic conductivity of electrolyte during the development of inorganic fast ionic conductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佚小满完成签到,获得积分10
刚刚
c123完成签到 ,获得积分10
1秒前
1秒前
berry发布了新的文献求助10
1秒前
超11发布了新的文献求助10
1秒前
2秒前
2秒前
隐形曼青应助烩面大师采纳,获得10
2秒前
2秒前
默然的歌完成签到 ,获得积分10
2秒前
CTL发布了新的文献求助10
3秒前
3秒前
3秒前
大鹏完成签到,获得积分10
3秒前
3秒前
3秒前
congguitar发布了新的文献求助10
4秒前
CodeCraft应助韭黄采纳,获得10
4秒前
4秒前
小月发布了新的文献求助10
4秒前
香蕉觅云应助学渣向下采纳,获得10
5秒前
5秒前
YML完成签到,获得积分10
6秒前
荣安安完成签到,获得积分10
6秒前
啦某某完成签到,获得积分10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
zhenzhen发布了新的文献求助10
7秒前
fang发布了新的文献求助10
7秒前
chengyulin完成签到 ,获得积分10
7秒前
孙二二发布了新的文献求助10
7秒前
小二郎应助SY采纳,获得10
8秒前
Akim应助顺心的惜蕊采纳,获得10
9秒前
9秒前
berry完成签到,获得积分20
10秒前
康小郁完成签到,获得积分10
10秒前
快乐友灵完成签到,获得积分10
10秒前
11秒前
群木成林完成签到,获得积分10
11秒前
小白一号完成签到 ,获得积分10
11秒前
Cynthia完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759