海马结构
神经科学
重编程
生物
癫痫
加巴能
海马体
近颞叶癫痫
背景(考古学)
颞叶
神经发生
癫痫发生
抑制性突触后电位
细胞
遗传学
古生物学
作者
Célia Lentini,Marie d’Orange,Nicolás Marichal,Marie-Madeleine Trottmann,Rory Vignoles,Louis Foucault,Charlotte Verrier,Céline Massera,Olivier Raineteau,Karl‐Klaus Conzelmann,Sylvie Rival‐Gervier,Antoine Depaulis,Benedikt Berninger,Christophe Heinrich
出处
期刊:Cell Stem Cell
[Elsevier BV]
日期:2021-09-29
卷期号:28 (12): 2104-2121.e10
被引量:78
标识
DOI:10.1016/j.stem.2021.09.002
摘要
Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy.
科研通智能强力驱动
Strongly Powered by AbleSci AI