计算机科学
分割
人工智能
图形
图像分割
模式识别(心理学)
作者
Ruikun Li,Yijie Huang,Huai Chen,Xiaoqing Liu,Yizhou Yu,Dahong Qian,Lisheng Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2021-10-06
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2021.3118104
摘要
Segmentation of hepatic vessels from 3D CT images is necessary for accurate diagnosis and preoper-ative planning for liver cancer. However, due to the low contrast and high noises of CT images, automatic hepatic vessel segmentation is a challenging task. Hepatic vessels are connected branches containing thick and thin blood vessels, showing an important structural characteristic or a prior: the connectivity of blood vessels. However, this is rarely applied in existing methods. In this paper, we segment hepatic vessels from 3D CT images by utilizing the connectivity prior. To this end, a graph neural network (GNN) used to describe the connectivity prior of hepatic vessels is integrated into a general convolutional neu-ral network (CNN). Specifically, a graph attention network (GAT) is first used to model the graphical connectivity information of hepatic vessels, which can be trained with the vascular connectivity graph constructed directly from the ground truths. Second, the GAT is integrated with a lightweight 3D U-Net by an efficient mechanism called the plug-in mode, in which the GAT is incorporated into the U-Net as a multi-task branch and is only used to supervise the training procedure of the U-Net with the connectivity prior. The GAT will not be used in the inference stage, and thus will not increase the hardware and time costs of the inference stage compared with the U-Net. Therefore, hepatic vessel segmentation can be well improved in an efficient mode. Extensive experiments on two public datasets show that the proposed method is superior to related works in accuracy and connectivity of hepatic vessel segmentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI