Breast mass classification with transfer learning based on scaling of deep representations

模式识别(心理学) 特征提取 自编码 特征(语言学) 机器学习
作者
Michal Byra
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102828- 被引量:2
标识
DOI:10.1016/j.bspc.2021.102828
摘要

Abstract Ultrasound (US) imaging is widely used to help radiologists in diagnosing breast cancer. In this work, we propose a deep learning based approach to breast mass classification in US. Transfer learning with convolutional neural networks (CNNs) is commonly used to develop object recognition models in medical image analysis. The most widely used fine-tuning techniques aim to modify weights of pre-trained networks to address target medical problems. However, fine-tuning can be difficult when the number of trainable parameters of the pre-trained network is large and the available medical data are scarce. To address this issue, we propose a novel transfer learning technique based on deep representation scaling (DRS) layers, which are inserted between the blocks of a pre-trained CNN to enable better flow of information in the network. During network training, we only update the parameters of the DRS layers in order to adjust the pre-trained CNN to process breast mass US images. We present that the DRS based approach greatly reduces the number of trainable parameters, and achieves better or comparable performance to the standard transfer learning techniques. The proposed DRS layer method combined with the standard fine-tuning techniques achieved excellent breast mass classification performance, with area under the receiver operating characteristic curve of 0.955 and accuracy of 0.915.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abner完成签到,获得积分10
3秒前
忧郁绣连发布了新的文献求助10
5秒前
5秒前
淡定丹琴完成签到,获得积分10
6秒前
6秒前
须臾发布了新的文献求助10
6秒前
6秒前
yourbigdaddy关注了科研通微信公众号
7秒前
李爱国应助凤凤采纳,获得10
7秒前
7秒前
8秒前
书晨完成签到,获得积分10
9秒前
英俊的铭应助划水采纳,获得10
9秒前
zzzzzzzzzzzz发布了新的文献求助10
9秒前
halo完成签到,获得积分10
10秒前
追梦大鹏发布了新的文献求助10
11秒前
书晨发布了新的文献求助10
12秒前
在德黑兰击剑的椰子完成签到 ,获得积分10
12秒前
zhangjianzeng发布了新的文献求助10
12秒前
rrgogo发布了新的文献求助10
12秒前
mimi发布了新的文献求助10
13秒前
14秒前
Fairyliiyao发布了新的文献求助10
15秒前
huaaaaaa1完成签到,获得积分20
15秒前
情怀应助称心乐枫采纳,获得10
16秒前
香蕉凤凰发布了新的文献求助10
16秒前
须臾完成签到,获得积分10
18秒前
李健的小迷弟应助huaaaaaa1采纳,获得10
19秒前
嘿嘿嘿嘿完成签到,获得积分10
20秒前
123完成签到,获得积分10
20秒前
直率的不评应助安琪采纳,获得10
20秒前
超帅英姑发布了新的文献求助10
21秒前
janarbek完成签到,获得积分10
22秒前
所所应助mimi采纳,获得10
22秒前
哈哈完成签到 ,获得积分10
23秒前
赘婿应助iuv采纳,获得10
26秒前
隐形曼青应助静越采纳,获得10
27秒前
Lucas应助marc107采纳,获得10
30秒前
31秒前
谦让的青亦完成签到,获得积分20
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023