Breast mass classification with transfer learning based on scaling of deep representations

模式识别(心理学) 特征提取 自编码 特征(语言学) 机器学习
作者
Michal Byra
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102828- 被引量:2
标识
DOI:10.1016/j.bspc.2021.102828
摘要

Abstract Ultrasound (US) imaging is widely used to help radiologists in diagnosing breast cancer. In this work, we propose a deep learning based approach to breast mass classification in US. Transfer learning with convolutional neural networks (CNNs) is commonly used to develop object recognition models in medical image analysis. The most widely used fine-tuning techniques aim to modify weights of pre-trained networks to address target medical problems. However, fine-tuning can be difficult when the number of trainable parameters of the pre-trained network is large and the available medical data are scarce. To address this issue, we propose a novel transfer learning technique based on deep representation scaling (DRS) layers, which are inserted between the blocks of a pre-trained CNN to enable better flow of information in the network. During network training, we only update the parameters of the DRS layers in order to adjust the pre-trained CNN to process breast mass US images. We present that the DRS based approach greatly reduces the number of trainable parameters, and achieves better or comparable performance to the standard transfer learning techniques. The proposed DRS layer method combined with the standard fine-tuning techniques achieved excellent breast mass classification performance, with area under the receiver operating characteristic curve of 0.955 and accuracy of 0.915.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜姜完成签到,获得积分20
刚刚
丘比特应助黄健伟采纳,获得10
1秒前
1秒前
oblivious完成签到,获得积分10
1秒前
充电宝应助flyzhang20采纳,获得30
2秒前
直率千青完成签到,获得积分10
2秒前
哇啦哇啦呼呼应助梁艳采纳,获得10
2秒前
baiweizi完成签到,获得积分10
3秒前
在水一方应助kangkang采纳,获得10
4秒前
4秒前
ppaahan发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
9秒前
10秒前
干焱完成签到,获得积分10
10秒前
彩虹糖完成签到,获得积分10
10秒前
Lialilico完成签到,获得积分10
11秒前
13秒前
14秒前
BK_发布了新的文献求助10
14秒前
flyzhang20发布了新的文献求助30
15秒前
bkagyin应助风趣的鸭子采纳,获得10
15秒前
九闫祝完成签到,获得积分10
15秒前
薏米lilili应助饱满的海秋采纳,获得10
18秒前
winew完成签到 ,获得积分10
19秒前
乐乐发布了新的文献求助10
20秒前
鸽子的迷信完成签到,获得积分10
21秒前
顺心紫翠完成签到 ,获得积分10
22秒前
23秒前
25秒前
欣慰问凝完成签到 ,获得积分10
25秒前
bey完成签到,获得积分10
25秒前
jcy驳回了怡然乌应助
26秒前
flyzhang20完成签到,获得积分10
26秒前
汪爷爷发布了新的文献求助10
27秒前
WeiSONG发布了新的文献求助10
28秒前
28秒前
hadfunsix完成签到 ,获得积分10
28秒前
LSH970829发布了新的文献求助10
29秒前
搜集达人应助科研通管家采纳,获得30
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152