Deep Learning meets Knowledge Graphs for Scholarly Data Classification

计算机科学 过程(计算) 班级(哲学) 模式(遗传算法) 数据科学 情报检索 知识图 人工智能 语义学(计算机科学) 机器学习 操作系统 程序设计语言
作者
Fabian Hoppe,Danilo Dessı̀,Harald Sack
出处
期刊:Companion Proceedings of the Web Conference 2021 被引量:10
标识
DOI:10.1145/3442442.3451361
摘要

The amount of scientific literature continuously grows, which poses an increasing challenge for researchers to manage, find and explore research results. Therefore, the classification of scientific work is widely applied to enable the retrieval, support the search of suitable reviewers during the reviewing process, and in general to organize the existing literature according to a given schema. The automation of this classification process not only simplifies the submission process for authors, but also ensures the coherent assignment of classes. However, especially fine-grained classes and new research fields do not provide sufficient training data to automatize the process. Additionally, given the large number of not mutual exclusive classes, it is often difficult and computationally expensive to train models able to deal with multi-class multi-label settings. To overcome these issues, this work presents a preliminary Deep Learning framework as a solution for multi-label text classification for scholarly papers about Computer Science. The proposed model addresses the issue of insufficient data by utilizing the semantics of classes, which is explicitly provided by latent representations of class labels. This study uses Knowledge Graphs as a source of these required external class definitions by identifying corresponding entities in DBpedia to improve the overall classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
刚刚
周斯越完成签到 ,获得积分10
刚刚
深情安青应助科研通管家采纳,获得150
刚刚
1秒前
所所应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
xliiii完成签到,获得积分10
2秒前
3秒前
打打应助Vincent采纳,获得10
4秒前
Nyota发布了新的文献求助20
5秒前
子不语完成签到,获得积分10
5秒前
DADA发布了新的文献求助10
5秒前
大漂亮完成签到,获得积分10
5秒前
6秒前
赵坤煊发布了新的文献求助10
6秒前
7秒前
嗯呢发布了新的文献求助10
7秒前
10秒前
DADA完成签到,获得积分10
12秒前
ZY完成签到,获得积分10
12秒前
Anoxia完成签到,获得积分10
12秒前
13秒前
压缩应助凡仔采纳,获得10
14秒前
慕青应助感性的又槐采纳,获得10
14秒前
赘婿应助Ryan123采纳,获得10
14秒前
16秒前
尊敬雨双完成签到,获得积分10
17秒前
19秒前
zyb发布了新的文献求助200
21秒前
nice1334完成签到,获得积分10
21秒前
乐乐应助派大星采纳,获得10
22秒前
鲤鱼完成签到 ,获得积分10
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530