无精子症
支持细胞
间充质干细胞
男科
精子发生
布苏尔班
干细胞
CD44细胞
生物
梗阻性无精症
细胞生物学
细胞
医学
不育
生物化学
遗传学
造血干细胞移植
怀孕
作者
Yiting Cai,Chengliang Xiong,Tian‐shu Liu,Shiliang Shen,Jinpeng Rao,Feng Qiu
出处
期刊:Andrologia
[Wiley]
日期:2021-06-18
卷期号:53 (8)
被引量:8
摘要
This study aimed at the efficacy of sequential treatment of bone marrow-derived mesenchymal stem cell secretion for busulfan-treated azoospermia in mice. The conditioned media (CM) was obtained from bone marrow mesenchymal stem cells (MSCs) or 293 cells. Chemically induced azoospermia mice received 200 μl MSC-CM or 293-CM twice a week intravenously for three consecutive weeks. The histological assessment of spermatogenic recovery quantifying the expression of meiosis-associated genes, and Sertoli cell barrier functional factors were assessed. The characteristics of TM4 cells (Sertoli cell line) after pre-incubation of MSC-CM in vitro were also obtained. The MSC-CM group had the most spermatogenic colonies among the three groups (p < .05), but no spermatids were seen. Expressions of the meiosis-associated genes Dazl, Vasa, Miwi, Stra8, CyclinA1, Pgk2 and Scp3 in MSC-CM testis were remarkably higher compared with 293-CM and busulfan groups respectively (p < .05). The levels of Sertoli cell barrier functional factors, for example ICAM-1 and N-cadherin, were significantly increased during MSC-CM treatment (p < .05). Moreover, pre-incubation of MSC-CM particularly accelerated the CD54 (ICAM-1) and CD44 expressions of TM4 cells and promoted cell inherent adhesion. MSC-CM treatment can significantly improve the short-term restoration of spermatogonial structures of chemically induced azoospermia related to facilitating Sertoli cell adhesion integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI