材料科学
原子层沉积
光催化
化学工程
纳米颗粒
大气压力
沉积(地质)
图层(电子)
纳米技术
催化作用
气象学
工程类
古生物学
物理
化学
生物
生物化学
沉积物
作者
Dominik Benz,Y-Nhi T Nguyen,Thanh-Lieu Thi Le,Thanh-Hiep Thi Le,Viet Thong Le,J. Ruud van Ommen,Hao Van Bui
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2021-07-02
卷期号:32 (42): 425601-425601
被引量:9
标识
DOI:10.1088/1361-6528/ac10e2
摘要
This work presents a gas-phase approach for the synthesis of Cu2O/TiO2 powder-based photocatalysts using atomic layer deposition (ALD). The process is carried out in a fluidized bed reactor working at atmospheric pressure using (trimethylvinylsilyl)-hexafluoroacetulacetonate copper(I) as the Cu-precursor and H2O vapor as the oxidizer. The saturating regime of the chemical reactions and the linear growth of ALD are achieved. In combination with the unsaturated regime, the ALD approach enables the deposition of ultrasmall Cu2O clusters with average diameters in the range of 1.3 – 2.0 nm, narrow particle size distributions and tunable Cu2O loadings on P25 TiO2 nanoparticles. The photocatalytic performance of Cu2O/TiO2 photocatalysts is investigated by the degradation of organic dyes, including Rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), demonstrating that the surface modification of TiO2 nanoparticles by Cu2O nanoclusters significantly enhanced the photocatalytic activity of TiO2. This is attributed to the efficient charge transfer between Cu2O and TiO2 that reduces the charge recombination. The photocatalytic reaction mechanism is further investigated for the degradation of RhB, revealing the dominating role of holes, which contribute to both direct hole oxidation and indirect oxidation (i.e., via the formation of hydroxyl radicals). Our approach provides a fast, scalable and efficient process to deposit ultrasmall Cu2O clusters in a controllable fashion for surface engineering and modification.
科研通智能强力驱动
Strongly Powered by AbleSci AI