Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models

多元自适应回归样条 过度拟合 机器学习 克里金 人工智能 人工神经网络 计算机科学 支持向量机 替代模型 预测建模 高斯过程 线性回归 火星探测计划 数据挖掘 贝叶斯多元线性回归 高斯分布 物理 量子力学 天文
作者
Panagiotis G. Asteris,Athanasia D. Skentou,Abidhan Bardhan,Pijush Samui,Kypros Pilakoutas
出处
期刊:Cement and Concrete Research [Elsevier]
卷期号:145: 106449-106449 被引量:527
标识
DOI:10.1016/j.cemconres.2021.106449
摘要

This study aims to implement a hybrid ensemble surrogate machine learning technique in predicting the compressive strength (CS) of concrete, an important parameter used for durability design and service life prediction of concrete structures in civil engineering projects. For this purpose, an experimental database consisting of 1030 records has been compiled from the machine learning repository of the University of California, Irvine. The database was used to train and validate four conventional machine learning (CML) models, namely Artificial Neural Network (ANN), Linear and Non-Linear Multivariate Adaptive Regression Splines (MARS-L and MARS-C), Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR). Subsequently, the predicted outputs of CML models were combined and trained using ANN to construct the Hybrid Ensemble Model (HENSM). It is observed that the proposed HENSM produces higher predictive accuracy compared to the CML models used in the present study. The predictive performance of all models for CS prediction was compared using the testing dataset and it is found that the HENSM model attained the highest predictive accuracy in both phases. Based on the experimental results, the newly constructed HENSM model is very potential to be a new alternative in handling the overfitting issues of CML models and hence, can be used to predict the concrete CS, including the design of less polluting and more sustainable concrete constructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hiky_0703发布了新的文献求助10
2秒前
华仔应助牛市棋手采纳,获得10
2秒前
2秒前
励志发SCI发布了新的文献求助20
3秒前
3秒前
大胆夏兰完成签到,获得积分10
4秒前
程昱发布了新的文献求助30
6秒前
7秒前
10秒前
走进你的梦完成签到 ,获得积分10
11秒前
牛市棋手发布了新的文献求助10
13秒前
17秒前
王壮壮完成签到,获得积分10
17秒前
17秒前
反方向的枫完成签到,获得积分10
17秒前
18秒前
1eegl完成签到,获得积分10
19秒前
科研通AI6.1应助asata采纳,获得10
19秒前
19秒前
跳跃孤萍发布了新的文献求助10
20秒前
22秒前
充电宝应助孙靖博采纳,获得10
22秒前
赘婿应助孙靖博采纳,获得10
22秒前
1eegl发布了新的文献求助10
24秒前
25秒前
886完成签到 ,获得积分10
30秒前
Lucas应助XS_QI采纳,获得10
33秒前
WangXinlin完成签到,获得积分10
36秒前
lovesxj941发布了新的文献求助20
39秒前
拓扑超导相变完成签到 ,获得积分10
39秒前
43秒前
44秒前
XS_QI发布了新的文献求助10
48秒前
49秒前
Ephemerality完成签到 ,获得积分10
51秒前
52秒前
跳跃的迎荷完成签到 ,获得积分10
56秒前
刘明完成签到,获得积分10
59秒前
59秒前
星辰大海应助积极问晴采纳,获得10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998