Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models

多元自适应回归样条 过度拟合 机器学习 克里金 人工智能 人工神经网络 计算机科学 支持向量机 替代模型 预测建模 高斯过程 线性回归 火星探测计划 数据挖掘 贝叶斯多元线性回归 高斯分布 物理 量子力学 天文
作者
Panagiotis G. Asteris,Athanasia D. Skentou,Abidhan Bardhan,Pijush Samui,Kypros Pilakoutas
出处
期刊:Cement and Concrete Research [Elsevier]
卷期号:145: 106449-106449 被引量:392
标识
DOI:10.1016/j.cemconres.2021.106449
摘要

This study aims to implement a hybrid ensemble surrogate machine learning technique in predicting the compressive strength (CS) of concrete, an important parameter used for durability design and service life prediction of concrete structures in civil engineering projects. For this purpose, an experimental database consisting of 1030 records has been compiled from the machine learning repository of the University of California, Irvine. The database was used to train and validate four conventional machine learning (CML) models, namely Artificial Neural Network (ANN), Linear and Non-Linear Multivariate Adaptive Regression Splines (MARS-L and MARS-C), Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR). Subsequently, the predicted outputs of CML models were combined and trained using ANN to construct the Hybrid Ensemble Model (HENSM). It is observed that the proposed HENSM produces higher predictive accuracy compared to the CML models used in the present study. The predictive performance of all models for CS prediction was compared using the testing dataset and it is found that the HENSM model attained the highest predictive accuracy in both phases. Based on the experimental results, the newly constructed HENSM model is very potential to be a new alternative in handling the overfitting issues of CML models and hence, can be used to predict the concrete CS, including the design of less polluting and more sustainable concrete constructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助科研通管家采纳,获得10
刚刚
七号在野闪闪完成签到 ,获得积分10
刚刚
murraya发布了新的文献求助10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
爱吃香菜应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
852应助唐是唐采纳,获得10
刚刚
马思维完成签到,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
qc应助科研通管家采纳,获得30
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
xxx完成签到,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Hilda007应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
蓝色的大尾巴鱼完成签到,获得积分10
1秒前
1秒前
李健应助Tangtang561o采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
金元宝完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
zzz完成签到,获得积分10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Hilda007应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
花青完成签到,获得积分10
3秒前
YingxueRen完成签到,获得积分10
3秒前
缥缈傥发布了新的文献求助10
4秒前
咩咩完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
kellyzzm完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5359226
求助须知:如何正确求助?哪些是违规求助? 4490112
关于积分的说明 13977361
捐赠科研通 4392216
什么是DOI,文献DOI怎么找? 2412770
邀请新用户注册赠送积分活动 1405443
关于科研通互助平台的介绍 1379989