反离子
化学
电导
离域电子
结晶学
分子
化学物理
离子
凝聚态物理
物理
有机化学
作者
Wenjun Xu,Edmund Leary,Sara Sangtarash,Michael Jirásek,M. Teresa González,Kirsten E. Christensen,Lydia Abellán Vicente,Nicolás Agraı̈t,Simon J. Higgins,Richard J. Nichols,Colin J. Lambert,Harry L. Anderson
摘要
Molecules capable of mediating charge transport over several nanometers with minimal decay in conductance have fundamental and technological implications. Polymethine cyanine dyes are fascinating molecular wires because up to a critical length, they have no bond-length alternation (BLA) and their electronic structure resembles a one-dimensional free-electron gas. Beyond this threshold, they undergo a symmetry-breaking Peierls transition, which increases the HOMO-LUMO gap. We have investigated cationic cyanines with central polymethine chains of 5-13 carbon atoms (Cy3+-Cy11+). The absorption spectra and crystal structures show that symmetry breaking is sensitive to the polarity of the medium and the size of the counterion. X-ray crystallography reveals that Cy9·PF6 and Cy11·B(C6F5)4 are Peierls distorted, with high BLA at one end of the π-system, away from the partially delocalized positive charge. This pattern of BLA distribution resembles that of solitons in polyacetylene. The single-molecule conductance is essentially independent of molecular length for the polymethine salts of Cy3+-Cy11+ with the large B(C6F5)4- counterion, but with the PF6- counterion, the conductance decreases for the longer molecules, Cy7+-Cy11+, because this smaller anion polarizes the π-system, inducing a symmetry-breaking transition. At higher bias (0.9 V), the conductance of the shorter chains, Cy3+-Cy7+, increases with length (negative attenuation factor, β = -1.6 nm-1), but the conductance still drops in Cy9+ and Cy11+ with the small polarizing PF6- counteranion.
科研通智能强力驱动
Strongly Powered by AbleSci AI