De Novo Design of Molecules with Low Hole Reorganization Energy Based on a Quarter-Million Molecule DFT Screen

自编码 密度泛函理论 分子 化学 功能(生物学) 轨道能级差 富勒烯 统计物理学 材料科学 计算化学 拓扑(电路) 算法 计算机科学 深度学习 人工智能 量子力学 数学 物理 组合数学 生物 进化生物学
作者
Gabriel Marques,Karl Leswing,Tim Robertson,David J. Giesen,Mathew D. Halls,Alexander Goldberg,Kyle Marshall,Joshua Staker,Tsuguo Morisato,Hiroyuki Maeshima,Hideyuki Arai,Masaru Sasago,Eiji Fujii,Nobuyuki Matsuzawa
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:125 (33): 7331-7343 被引量:19
标识
DOI:10.1021/acs.jpca.1c04587
摘要

Materials exhibiting higher mobilities than conventional organic semiconducting materials such as fullerenes and fused thiophenes are in high demand for applications in printed electronics. To discover new molecules in the heteroacene family that might show improved hole mobility, three de novo design methods were applied. Machine learning (ML) models were generated based on previously calculated hole reorganization energies of a quarter million examples of heteroacenes, where the energies were calculated by applying density functional theory (DFT) and a massive cloud computing environment. The three generative methods applied were (1) the continuous space method, where molecular structures are converted into continuous variables by applying the variational autoencoder/decoder technique; (2) the method based on reinforcement learning of SMILES strings (the REINVENT method); and (3) the junction tree variational autoencoder method that directly generates molecular graphs. Among the three methods, the second and third methods succeeded in obtaining chemical structures whose DFT-calculated hole reorganization energy was lower than the lowest energy in the training dataset. This suggests that an extrapolative materials design protocol can be developed by applying generative modeling to a quantitative structure–property relationship (QSPR) utility function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
火速阿百川完成签到,获得积分10
3秒前
4秒前
情怀应助开心的西瓜采纳,获得10
5秒前
5秒前
orixero应助勇敢牛牛采纳,获得10
5秒前
7秒前
8秒前
可以的发布了新的文献求助10
9秒前
领导范儿应助Moon采纳,获得10
9秒前
10秒前
12秒前
小吴发布了新的文献求助10
13秒前
zxtwins发布了新的文献求助10
13秒前
小美发布了新的文献求助30
14秒前
苏晨完成签到 ,获得积分20
14秒前
言午完成签到,获得积分10
14秒前
15秒前
王铭元发布了新的文献求助10
15秒前
Jinx完成签到,获得积分10
16秒前
17秒前
勇敢牛牛发布了新的文献求助10
18秒前
pluto应助大雯仔采纳,获得10
20秒前
22秒前
Ail完成签到,获得积分10
24秒前
NexusExplorer应助123采纳,获得10
27秒前
背完单词好睡觉完成签到 ,获得积分10
28秒前
28秒前
一一完成签到,获得积分20
28秒前
羽言发布了新的文献求助20
32秒前
33秒前
小虎呀发布了新的文献求助10
33秒前
34秒前
脑洞疼应助王铭元采纳,获得10
34秒前
大雯仔完成签到,获得积分10
34秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421421
求助须知:如何正确求助?哪些是违规求助? 3022195
关于积分的说明 8899538
捐赠科研通 2709460
什么是DOI,文献DOI怎么找? 1485759
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681973