Deep Fuzzy Rule-Based Classification System With Improved Wang–Mendel Method

可解释性 人工智能 模糊逻辑 模糊规则 计算机科学 模糊控制系统 维数之咒 神经模糊 模糊分类 机器学习 深度学习 图层(电子) 数据挖掘 模式识别(心理学) 有机化学 化学
作者
Yuangang Wang,Haoran Liu,Wenhao Jia,Shuo Guan,Xiaodong Liu,Xiaodong Duan
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 2957-2970 被引量:6
标识
DOI:10.1109/tfuzz.2021.3098339
摘要

Wang–Mendel (WM) fuzzy system is an effective and interpretable model for solving tabular data classification problem. However, original WM fuzzy system is weak in handling dataset with high dimensionality or large volume. Meanwhile, its capability of characterizing data is narrow, which results from lacking hierarchical transformation of features like deep learning-based models. In this article, we propose a deep fuzzy rule-based classification system (DFRBCS) based on improved WM method, in which fuzzy technique and deep learning strategy are combined to make a desirable tradeoff between model’s interpretability and prediction accuracy. We first redefine the consequent part of fuzzy rule in WM fuzzy system with class probability vector, which endows the improved WM fuzzy system with capacity for serving as building block of deep model. The model structure of DFRBCS is designed in layer-by-layer manner, where raw features can be transformed hierarchically. For every layer in DFRBCS, it contains many improved WM fuzzy systems whose input spaces are generated by shuffling and sliding window operation on concatenated outputs of fuzzy systems in previous layer. Comparative experiments are conducted on 45 real-world datasets with various sizes and dimensionality between our method, five baseline models, and the other deep fuzzy classifiers (D-TSK-FC, HID-TSK-FC, FCCI-TSK, DSA-FC, and MEEFIS). The experimental results show that DFRBCS is competitive in classification performance and promising in model’s interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
杰尼龟的鱼完成签到 ,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
满意大门完成签到,获得积分10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
坚定晓兰应助科研通管家采纳,获得10
2秒前
grace2026应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
坚定晓兰应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
ys完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
段皖顺完成签到 ,获得积分10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766752
求助须知:如何正确求助?哪些是违规求助? 5566757
关于积分的说明 15413615
捐赠科研通 4900873
什么是DOI,文献DOI怎么找? 2636748
邀请新用户注册赠送积分活动 1584920
关于科研通互助平台的介绍 1540170