Deep Fuzzy Rule-Based Classification System With Improved Wang–Mendel Method

可解释性 人工智能 模糊逻辑 模糊规则 计算机科学 模糊控制系统 维数之咒 神经模糊 模糊分类 机器学习 深度学习 图层(电子) 数据挖掘 模式识别(心理学) 化学 有机化学
作者
Yuangang Wang,Haoran Liu,Wenhao Jia,Shuo Guan,Xiaodong Liu,Xiaodong Duan
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 2957-2970 被引量:6
标识
DOI:10.1109/tfuzz.2021.3098339
摘要

Wang–Mendel (WM) fuzzy system is an effective and interpretable model for solving tabular data classification problem. However, original WM fuzzy system is weak in handling dataset with high dimensionality or large volume. Meanwhile, its capability of characterizing data is narrow, which results from lacking hierarchical transformation of features like deep learning-based models. In this article, we propose a deep fuzzy rule-based classification system (DFRBCS) based on improved WM method, in which fuzzy technique and deep learning strategy are combined to make a desirable tradeoff between model’s interpretability and prediction accuracy. We first redefine the consequent part of fuzzy rule in WM fuzzy system with class probability vector, which endows the improved WM fuzzy system with capacity for serving as building block of deep model. The model structure of DFRBCS is designed in layer-by-layer manner, where raw features can be transformed hierarchically. For every layer in DFRBCS, it contains many improved WM fuzzy systems whose input spaces are generated by shuffling and sliding window operation on concatenated outputs of fuzzy systems in previous layer. Comparative experiments are conducted on 45 real-world datasets with various sizes and dimensionality between our method, five baseline models, and the other deep fuzzy classifiers (D-TSK-FC, HID-TSK-FC, FCCI-TSK, DSA-FC, and MEEFIS). The experimental results show that DFRBCS is competitive in classification performance and promising in model’s interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HtObama完成签到,获得积分10
1秒前
小欢完成签到,获得积分10
1秒前
小鹅呀完成签到,获得积分10
2秒前
沟通亿心完成签到,获得积分10
2秒前
果果完成签到,获得积分10
3秒前
Panchael完成签到,获得积分10
3秒前
3秒前
小井盖完成签到 ,获得积分10
5秒前
热情的元芹完成签到,获得积分10
5秒前
6秒前
陶醉的小海豚完成签到,获得积分10
7秒前
陆晓亦完成签到,获得积分10
7秒前
乐观的觅松完成签到,获得积分10
7秒前
2023204306324发布了新的文献求助10
8秒前
9秒前
端己完成签到,获得积分20
9秒前
10秒前
阿湫发布了新的文献求助10
10秒前
11秒前
11秒前
坤坤完成签到,获得积分10
11秒前
12秒前
STUSSY完成签到,获得积分10
12秒前
wuhuofeng发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
coco完成签到,获得积分10
16秒前
lshao完成签到 ,获得积分10
17秒前
17秒前
zhou发布了新的文献求助30
18秒前
跋扈完成签到,获得积分10
20秒前
温柔翰发布了新的文献求助10
20秒前
20秒前
Jj发布了新的文献求助10
21秒前
ficus_min发布了新的文献求助10
21秒前
木子发布了新的文献求助10
22秒前
Galato发布了新的文献求助10
22秒前
寒冷哈密瓜完成签到 ,获得积分0
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048