生物粘附
材料科学
止血
伤口愈合
止血剂
自愈水凝胶
止血剂
再生(生物学)
骨愈合
生物医学工程
药物输送
纳米技术
医学
外科
细胞生物学
生物
高分子化学
作者
Weijuan Huang,Shi Cheng,Xiaolan Wang,Yu Zhang,Lingyun Chen,Lina Zhang
标识
DOI:10.1002/adfm.202009189
摘要
Bone bleeding and bone defects arising from trauma or bone tumor resection pose a great threat to patients and they are challenging problems to orthopedic surgeons. Traditional hemostatic materials are not suitable for bone fractures where compression cannot be applied, neither are they effective during surgeries where large amounts of body fluids prevent them from adhering to the large and irregular bone wound sites. This research introduces a catechol-conjugated chitosan (CHI-C) multi-functional hydrogel with adhesion, self-healing, cytocompatibility, hemocompatibility, and blood cell coagulation capacity. The hydrogel can be injected into internal and irregular bleeding sites and bone defective areas, and then rapidly self-heals (within 2 min) to an integrated hydrogel that fully fills the defective sites and strongly sticks to bleeding areas in the presence of body fluids during surgery. In vivo experiments using a rabbit ilium bone defect model demonstrate quick hemostasis after the hydrogel is applied and the blood loss is only ¼ compared to the untreated injuries. In addition, the bone regeneration is not interfered by the hydrogel and the bone defect is no longer visible with disappearance of the hydrogel after 4 weeks. This multi-functional hydrogel is potentially valuable for clinical applications towards tissue adhesion, hemostasis, and bone regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI