MXenes公司
材料科学
四方晶系
石墨烯
声子
化学物理
金属
碳化物
结构稳定性
离子
氮化物
纳米技术
复合材料
结晶学
晶体结构
凝聚态物理
冶金
工程类
物理
化学
结构工程
量子力学
图层(电子)
作者
Minglei Sun,Udo Schwingenschlögl
标识
DOI:10.1002/aenm.202003633
摘要
Abstract While the MXene Ti 3 C 2 is well known for its extraordinary material properties with wide applications, it is demonstrated here that it is not the most stable 2D titanium carbide. Evolutionary search and first‐principles calculations are employed to predict for Ti 3 C 3 a novel structure prototype with P4/mmm symmetry and tetragonal sandwich structure. The cohesive energy, phonon dispersion, and melting point demonstrate high stability of Ti 3 C 3 . The mechanical properties are found to be even better than those of graphene in terms of Young's modulus and fracture strength. The metallicity of Ti 3 C 3 indicates potential in metal‐ion batteries. The diffusion barriers for Li, Na, K, and Ca atoms are found to be as low as 0.15, 0.04, 0.002 (record among the known 2D materials), and 0.14 eV, respectively, suggesting the possibility to realize fast charge and discharge. Importantly, the discovered structure prototype gives rise to a whole family of 2D materials. For example, six thermally and dynamically stable materials with metallic properties, Ti 3 X 3 (X = B, Si, Ge, N, P, and As) are identified. The family is promising not only in the fields of nano‐mechanics and metal‐ion batteries but also can guide the search for further 2D structure prototypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI