等离子体子
光子学
谐振器
材料科学
光电子学
拉曼散射
干扰(通信)
拉曼光谱
千分尺
近场和远场
纳米技术
光学
物理
计算机科学
计算机网络
频道(广播)
作者
Angelos Xomalis,Xuezhi Zheng,Angela Demetriadou,Alejandro Martı́nez,Rohit Chikkaraddy,Jeremy J. Baumberg
出处
期刊:Nano Letters
[American Chemical Society]
日期:2021-03-11
卷期号:21 (6): 2512-2518
被引量:38
标识
DOI:10.1021/acs.nanolett.0c04987
摘要
Plasmonic self-assembled nanocavities are ideal platforms for extreme light localization as they deliver mode volumes of <50 nm3. Here we show that high-order plasmonic modes within additional micrometer-scale resonators surrounding each nanocavity can boost light localization to intensity enhancements >105. Plasmon interference in these hybrid microresonator nanocavities produces surface-enhanced Raman scattering (SERS) signals many-fold larger than in the bare plasmonic constructs. These now allow remote access to molecules inside the ultrathin gaps, avoiding direct irradiation and thus preventing molecular damage. Combining subnanometer gaps with micrometer-scale resonators places a high computational demand on simulations, so a generalized boundary element method (BEM) solver is developed which requires 100-fold less computational resources to characterize these systems. Our results on extreme near-field enhancement open new potential for single-molecule photonic circuits, mid-infrared detectors, and remote spectroscopy.
科研通智能强力驱动
Strongly Powered by AbleSci AI