糖尿病性心肌病
链脲佐菌素
内科学
内分泌学
糖尿病
腹腔注射
医学
蛋白激酶B
香芹酚
链脲佐菌素
2型糖尿病
化学
心肌病
细胞凋亡
生物化学
精油
心力衰竭
色谱法
作者
Ning Hou,Yun-Pei Mai,Wenliang Chen,Faqian Li,Jia Luo
标识
DOI:10.1161/res.119.suppl_1.305
摘要
Background: Carvacrol (CAR), a monoterpenic phenol that occurs in many essential oils of the family Labiatae including Origanum , Satureja , Thymbra , Thymus , and Corydothymus species, possess a wide variety of pharmacological properties including antioxidant and anti-inflammatory potential. This present study was designed to investigate the cardiac protective effect of CAR on diabetic cardiomyopathy in STZ-induced type 1 diabetic mice and explore its potential molecular mechanism. Methods: Type 1 diabetes was induced by the intraperitoneal injection of streptozocin (STZ) to male mice at dose of 45 mg/kg body weight (BW). The diabetic animals were divided into three groups containing eight in each: Group I diabetes, Group II and II injected with CAR at 10 and 20 mg/kg BW respectively once daily for 6 weeks. Age matched male C57 mice were used as normal controls. The plasma concentrations of glucose, total cholesterol (TC) and triglycerides (TG) levels were enzymatically determined using commercial kits. The cardiac function was measured by echocardiography. Protein levels of p-PDK1/t-PDK1, p-AKT/t-AKT, p-GSKα/β/t-GSKα/β were detected by Western blotting. Results: STZ-induced C57BL/6J diabetic mice showed an elevation in serum glucose, TG and TC level. Compared to diabetic mice, administration of CAR resulted in significant decrease ( P <0.05) in plasma glucose level in a dose dependent manner, but did not attenuate elevation in TG and TC levels. The abnormal diastolic function in type 1 diabetic mice was significantly reversed by CAR administration. Furthermore, western blotting showed that the expression of p-PDK1, p-AKT and p-GSKα/β were lower in diabetic hearts than C57 hearts while total PDK1, AKT and GSK α/β protein levels were no difference among groups. CAR administration attenuated these decreases in protein phosphorylation. These findings indicate that the impaired PI3K/AKT pathway induced by STZ in diabetic heart can be restored by CAR. Conclusion: Carvacrol has antidiabetic property and can be potentially used to prevent hyperglycemia and diabetic cardiomyopathy.
科研通智能强力驱动
Strongly Powered by AbleSci AI