A Novel Multi-Class EEG-Based Sleep Stage Classification System

脑电图 人工智能 睡眠阶段 计算机科学 模式识别(心理学) 特征选择 分类器(UML) 交叉验证 随机森林 睡眠(系统调用) 多导睡眠图 语音识别 心理学 操作系统 精神科
作者
Pejman Memar,Farhad Faradji
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 84-95 被引量:176
标识
DOI:10.1109/tnsre.2017.2776149
摘要

Sleep stage classification is one of the most critical steps in effective diagnosis and the treatment of sleep-related disorders. Visual inspection undertaken by sleep experts is a time-consuming and burdensome task. A computer-assisted sleep stage classification system is thus essential for both sleep-related disorders diagnosis and sleep monitoring. In this paper, we propose a system to classify the wake and sleep stages with high rates of sensitivity and specificity. The EEG signals of 25 subjects with suspected sleep-disordered breathing, and the EEG signals of 20 healthy subjects from three data sets are used. Every EEG epoch is decomposed into eight subband epochs each of which has a frequency band pertaining to one EEG rhythm (i.e., delta, theta, alpha, sigma, beta 1, beta 2, gamma 1, or gamma 2). Thirteen features are extracted from each subband epoch. Therefore, 104 features are totally obtained for every EEG epoch. The Kruskal–Wallis test is used to examine the significance of the features. Non-significant features are discarded. The minimal-redundancy-maximal-relevance feature selection algorithm is then used to eliminate redundant and irrelevant features. The features selected are classified by a random forest classifier. To set the system parameters and to evaluate the system performance, nested 5-fold cross-validation and subject cross-validation are performed. The performance of our proposed system is evaluated for different multi-class classification problems. The minimum overall accuracy rates obtained are 95.31% and 86.64% for nested 5-fold and subject cross-validation, respectively. The system performance is promising in terms of the accuracy, sensitivity, and specificity rates compared with the ones of the state-of-the-art systems. The proposed system can be used in health care applications with the aim of improving sleep stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlololo发布了新的文献求助10
刚刚
烟雨梦兮发布了新的文献求助10
1秒前
orixero应助刘岩松采纳,获得10
1秒前
1秒前
思源应助莫西莫西采纳,获得10
1秒前
1秒前
刘源发布了新的文献求助10
1秒前
科研通AI2S应助认真以寒采纳,获得10
1秒前
八一完成签到,获得积分10
1秒前
mumu发布了新的文献求助10
1秒前
2秒前
赘婿应助炙热怜寒采纳,获得30
3秒前
Hans发布了新的文献求助20
3秒前
田様应助埋骨何须桑梓地采纳,获得10
3秒前
八一发布了新的文献求助10
4秒前
暖暖的禾日完成签到,获得积分10
4秒前
yuky发布了新的文献求助10
5秒前
默默向雪完成签到,获得积分0
5秒前
YJJ完成签到,获得积分10
5秒前
5秒前
5秒前
斯文败类应助Demonmaster采纳,获得10
6秒前
甜甜完成签到 ,获得积分10
6秒前
7秒前
我是老大应助网再快点采纳,获得10
7秒前
7秒前
束负允三金完成签到,获得积分10
7秒前
yookia举报小海狸求助涉嫌违规
8秒前
8秒前
p二完成签到,获得积分10
8秒前
情怀应助优美的幻梦采纳,获得10
9秒前
10秒前
10秒前
无所归兮应助烟雨梦兮采纳,获得10
10秒前
lixy完成签到,获得积分10
11秒前
11秒前
大模型应助八一采纳,获得10
11秒前
11秒前
11秒前
FashionBoy应助YJJ采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600