Outlier-Robust Matrix Completion via $\ell _p$ -Minimization

离群值 基质(化学分析) 秩(图论) 计算机科学 算法 组合数学 人工智能 数学 材料科学 复合材料
作者
Wen-Jun Zeng,Hing Cheung So
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:66 (5): 1125-1140 被引量:78
标识
DOI:10.1109/tsp.2017.2784361
摘要

Matrix completion refers to recovering a low-rank matrix from only a subset of its possibly noisy entries, and has a variety of important applications because many real-world signals can be modeled by a n 1 × n 2 matrix with rank r ≪ min(n 1 , n 2 ). Most existing techniques for matrix completion assume Gaussian noise and, thus, they are not robust to outliers. In this paper, we devise two algorithms for robust matrix completion based on low-rank matrix factorization and ℓ p -norm minimization of the fitting error with 0 <; p <; 2. The first method tackles the low-rank matrix factorization with missing data by iteratively solving (n 1 + n 2 ) linear ℓ p -regression problems, whereas the second applies the alternating direction method of multipliers (ADMM) in the ℓ p -space. At each iteration of the ADMM, it requires performing a least squares (LS) matrix factorization and calculating the proximity operator of the pth power of the ℓ p -norm. The LS factorization is efficiently solved using linear LS regression while the proximity operator has closed-form solution for p = 1 or can be obtained by root finding of a scalar nonlinear equation for other values of p. The two proposed algorithms have comparable recovery capability and computational complexity of O(K|Ω|r 2 ), where |Ω| is the number of observed entries and K is a fixed constant of several hundreds to thousands and dimension independent. It is demonstrated that they are superior to the singular value thresholding, singular value projection, and alternating projection schemes in terms of computational simplicity, statistical accuracy, and outlier-robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卿卿完成签到 ,获得积分10
刚刚
刚刚
所所应助LW采纳,获得10
刚刚
1秒前
朱猪侠完成签到,获得积分10
1秒前
2秒前
网友依旧发布了新的文献求助10
2秒前
anananyi完成签到,获得积分10
3秒前
我是老大应助半城微凉采纳,获得30
4秒前
4秒前
Akim应助LiangHu采纳,获得10
5秒前
科研通AI2S应助知涯采纳,获得20
5秒前
mimi3358发布了新的文献求助10
6秒前
wanci应助清蒸鱼采纳,获得10
6秒前
6秒前
6秒前
拼搏灰狼完成签到,获得积分10
7秒前
赵赵赵发布了新的文献求助10
7秒前
7秒前
乐乐应助zz采纳,获得10
7秒前
7秒前
优秀若剑完成签到,获得积分10
7秒前
li发布了新的文献求助10
8秒前
8秒前
00完成签到,获得积分10
8秒前
李爱国应助koi采纳,获得10
8秒前
浮生如梦完成签到,获得积分10
8秒前
稻草人完成签到,获得积分10
8秒前
Amor发布了新的文献求助30
8秒前
8秒前
9秒前
共享精神应助樱悼柳雪采纳,获得10
9秒前
赵芳发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
胖大海完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
万能图书馆应助玩命的勒采纳,获得10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271