A Scalable Reinforcement Learning Algorithm for Scheduling Railway Lines

强化学习 计算机科学 可扩展性 调度(生产过程) 分布式计算 人工智能 数学优化 数学 操作系统
作者
Harshad Khadilkar
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 727-736 被引量:39
标识
DOI:10.1109/tits.2018.2829165
摘要

This paper describes an algorithm for scheduling bidirectional railway lines (both single- and multi-track) using a reinforcement learning (RL) approach. The goal is to define the track allocations and arrival/departure times for all trains on the line, given their initial positions, priority, halt times, and traversal times, while minimizing the total priority-weighted delay. The primary advantage of the proposed algorithm compared to exact approaches is its scalability, and compared to heuristic approaches is its solution quality. Efficient scaling is ensured by decoupling the size of the state-action space from the size of the problem instance. Improved solution quality is obtained because of the inherent adaptability of reinforcement learning to specific problem instances. An additional advantage is that the learning from one instance can be transferred with minimal re-learning to another instance with different infrastructure resources and traffic mix. It is shown that the solution quality of the RL algorithm exceeds that of two prior heuristic-based approaches while having comparable computation times. Two lines from the Indian rail network are used for demonstrating the applicability of the proposed algorithm in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XY完成签到,获得积分10
3秒前
马瑞发布了新的文献求助10
4秒前
不配.应助zyx采纳,获得20
4秒前
4秒前
称心紊完成签到,获得积分10
5秒前
6秒前
善学以致用应助XY采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得50
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
苹果应助科研通管家采纳,获得30
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
9秒前
思源应助科研通管家采纳,获得10
9秒前
重要迎蕾发布了新的文献求助10
9秒前
苹果应助科研通管家采纳,获得30
9秒前
ranqi应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
lruri张关注了科研通微信公众号
11秒前
11秒前
Enia完成签到,获得积分10
11秒前
HHHHHH完成签到,获得积分10
12秒前
画画完成签到,获得积分10
13秒前
酷波er应助高兴的曼卉采纳,获得10
14秒前
爱静静应助Joy采纳,获得10
14秒前
15秒前
curtisness应助岐祁琪奇采纳,获得10
15秒前
chenjyuu关注了科研通微信公众号
15秒前
希望天下0贩的0应助ri_290采纳,获得10
15秒前
zyx完成签到,获得积分10
16秒前
HHHHHH发布了新的文献求助30
16秒前
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023