A Scalable Reinforcement Learning Algorithm for Scheduling Railway Lines

强化学习 计算机科学 可扩展性 调度(生产过程) 分布式计算 人工智能 数学优化 数学 操作系统
作者
Harshad Khadilkar
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 727-736 被引量:39
标识
DOI:10.1109/tits.2018.2829165
摘要

This paper describes an algorithm for scheduling bidirectional railway lines (both single- and multi-track) using a reinforcement learning (RL) approach. The goal is to define the track allocations and arrival/departure times for all trains on the line, given their initial positions, priority, halt times, and traversal times, while minimizing the total priority-weighted delay. The primary advantage of the proposed algorithm compared to exact approaches is its scalability, and compared to heuristic approaches is its solution quality. Efficient scaling is ensured by decoupling the size of the state-action space from the size of the problem instance. Improved solution quality is obtained because of the inherent adaptability of reinforcement learning to specific problem instances. An additional advantage is that the learning from one instance can be transferred with minimal re-learning to another instance with different infrastructure resources and traffic mix. It is shown that the solution quality of the RL algorithm exceeds that of two prior heuristic-based approaches while having comparable computation times. Two lines from the Indian rail network are used for demonstrating the applicability of the proposed algorithm in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Obliviate完成签到,获得积分10
1秒前
yanjia完成签到,获得积分10
5秒前
5秒前
5秒前
CXR完成签到 ,获得积分10
6秒前
6秒前
吕君完成签到,获得积分10
6秒前
charley完成签到,获得积分20
6秒前
研友_VZG7GZ应助vooov采纳,获得10
6秒前
Owen应助梧桐雨210采纳,获得10
7秒前
snowwwwwwwwfox完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
青云天完成签到,获得积分20
9秒前
10秒前
敏感的文龙完成签到,获得积分10
10秒前
10秒前
11秒前
共享精神应助CXR采纳,获得10
11秒前
11秒前
tend发布了新的文献求助10
11秒前
星辰大海应助科研的牲口采纳,获得10
12秒前
Anaturez发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
青云天发布了新的文献求助10
13秒前
未顾发布了新的文献求助10
13秒前
13秒前
yu发布了新的文献求助10
14秒前
紧张的小松鼠完成签到,获得积分10
14秒前
时米米米发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
酷波er应助曾经书兰采纳,获得10
17秒前
桐桐应助风敲竹采纳,获得10
17秒前
bhkwxdxy发布了新的文献求助10
17秒前
17秒前
cl完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525150
求助须知:如何正确求助?哪些是违规求助? 4615463
关于积分的说明 14548366
捐赠科研通 4553496
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475898
关于科研通互助平台的介绍 1447659